CHAPTER 2 . f

INTRODUCTION TO OBJECT-ORIENTED |
SYSTEMS ANALYSIS AND DESIGN WITH THE
UNIFIED MODELING LANGUAGE, VERSION 2.0

This chapter introduces Object-Oriented Systems Analysis and Design with the Unified
Modeling Language, Version 2.0. First, the chapter introduces the basic characteristics of
object-oriented systems. Second, it introduces UML 2.0. Third, the chapter overviews
Object-Oriented Systems Analysis and Design and describes the Unified Process. Finally,
based on the Unified Process and the UML 2.0, the chapter provides a minimalist approach
to Object-Oriented Systems Analysis and Design with UML 2.0. '

& Understand the basic characteristics of object-oriented systems.

& Be familiar with the Unified Modeling Language (UML), Version 2.0.

@ Be familiar with the Unified Process.

Understand a minimalist approach to object-oriented systems analysis and design.

HAPTER OUTLINE

Introduction Use-case driven
Basic Characteristics of Architecture Centric
Object-Oriented Systems Iterative and Incremental
Classes and Objects The Unified Process
Methods and Messages A Minimalist Approach to Object-Oriented
Encapsulation and Information Hiding Systems Analysis and Design with UML 2.0
Inheritance Benefits of Object-Oriented Systems
Polymorphism and Dynamic Binding Analysis and Design
The Unified Modeling Language, Version 2.0 Extensions to the Unified Process ;
Structure Diagrams The Minimalist Object-Oriented 1
Behavior Diagrams Systems Analysis and Design Approach
Extension Mechanisms Summary
Object-Oriented Systems Analysis
and Design

23

24 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

INTRODUCTION

processeS) were. ed as. the building blocks for systemsi
The ideas behind object-oriented approaches are not new. They can be traced back to
the object-oriented programming languages Simula, created in the 1960s, and Smialltalk,

created in the eatly 1970s. Until the mid-1980s, developers had to keep the data and

processes separate to be capable of building systems that could run on the mainframe com-
puters of that era. Today, due to the increase in processor power and the decrease in proces-
sor cost, object-oriented approaches are feasible. One of the major hurdles of learning
object-oriented approaches to developing information systems is the volume of new ter-
minology. In this chapter we overview the basic characteristics of an object-oriented sys-
tem, provide an overview of the second version of the Unified Modeling Language (UML,
2.0), introduce basic object-oriented systems analysis and design and the Unified Process,
and present a minimalist approach to object-oriented systems analysis and design with
UML 2.0.

BASIC CHARACTERISTICS OF OBJECT-ORIENTED SYSTEMS

Object-oriented systems focus on capturing the structure and behavior of information sys-
tems in little modules that encompass both data and process. These little modules are
known as objects. In this'section of the. chapter we describe the basic characteristics of

object-oriented systems, which include classes, objects, methods, messages, encapsulatwn,
information hiding, inheritance; polymorphism, and dynamic binding.

Classes and Objects

A class is the general template we use to define and create specific instances, or objects.
Every object is associated with a class. For example, all of the objects that capture informa-
tion about patients could fall into a class called Patient, because there are attributes (e.g.,
names, addresses, and birth dates) and methods (e.g., insert new instances, maintain
information, and delete entries) that all patients share (see Figure 2-1).

An object is an instantiation of a class. In other words, an object is a person, place,
event, or thing about which we want to capture information. If we were building an
appointment system for a doctor’s office, classes might include doctor, patient, and
appointment. The specific patients like Jim Maloney, Mary Wilson, and Theresa Marks are
considered instances, or objects, of the patient class.

Each object has attributes that describe information about the object, such as a
patient’s name, birth date, address, and phone number. The state of an object is defined by
the value of its attributes and its relationships with other objects at a particular point in
time. For example;a patient might have a state.of “new” or “current” or “former.” .

Each object also has behaviors. The behaviors specify what the object can do. For.

example; an appointment object likely can schedule a new appointment, deletean appoint-

ment, and locate the next available appointment.

Basic Characteristics of Object-Oriented Systems 25

Objects

An instance of the Patient class

An instance of the Appointment class

FIGURE 2-1 Classes and Objects

One of the more confusing aspects of object-oriented systems development is the fact
that in most object-oriented programming languages, both classes and instances of classes ;

:':; can have attributes and methods. Qlas§ attributes and mthods tend to be used to model
of attributes (or methods) that deal with issues related to all instances of the class. For exam-
n ple, to create a new patient object, a message is sent to the patient class to create a new
’ instance of itself. However, from a systems analysis and design point of view, we will focus
primarily on attributes and methods of objects and not of classes.
Methods and Messages
:’ Methods implement an object’s behavior. A method is nothing more than an action that an
) object can perform. As such,they are analogous to a functlon or procedure in a traditional
:n’ programming language such as C, (, ot Pascal. Messages are information sent to
objects to trigger methods. Essentially, a message is a function or procedure call from one
. object to another object. For example, if a patient is new to the doctor’s office, the system
m’ will send an insert message to the application. The patient object will receive a message
d (instruction) and do what it needs to do to go about inserting the new patient into the sys-
e tem (execute its method). See Figure 2-2.
a Encapsulation and Information Hiding
y The ideas of encapsulation and information hiding are interrelated in object-oriented sys-
n tems. However, neither of the terms is new. Encapsulation is simply the combination of
' Ly process and data into a single entity. Traditional approaches to information systems devel-
r v {.3 v opment tend to be either process-centric (e.g., structured systems) or data-centric (e.g.,

] ‘y" information engineering). Object-oriented approaches combine process and data into
holistic entities (objects). ,

FIGURE 2-2
Messages and Methods

A message is sent to the application. The object’s insert method will
respond to the message and
insert a new patient instance.

Information hiding was first promoted in structured systems development. The prin-
ciple of information hiding suggests that only the information required to use a software
module be published to the user of the module. Typically, this implies the mformatlon
requlred to be passed to the module, and the mformatl n d

applymg it to functlon or
fm MWe can:

] FoRy | : In Flgure 2-2,
notlce how a message (msert new patient) is sent to an object yet the internal algorithms
needed to respond to the message are hidden from other parts of the system. The only
xnformatlon that an ob;ect needs to know is the set of operations, or methods that other

Inheritance

Inheritance, as an information systems development characteristic, was proposed in data
modeling in the late 1970s and the early 1980s. The data modeling literature suggests
using inheritance to identify higher-level, or more general, classes of objects. Common
sets;of attributesiand methodsican be organized into: superclasses: Typically, classes are
arranged in a hierarchy whereby the superclasses, or general classes, are at the top, and the
subclasses, or specific classes, are at the bottom. In Figure 2-3, person is a superclass to
the classes Doctor and Patient. Doctor, in turn, is a superclass to general practitioner and
specialist. Notice how a class (e.g., doctor) can serve as a superclass and subclass concur-
rently. The relationship between the class and its superclass is known as the A-Kind-Of
(AKO) relationship. For example, in Figure 2-3, a general practitioner is A-Kind-Of doc-
tor, which is A-Kind-Of person.

Subclasses inherit the appropriate attributes and methods from the superclasses
- above them. That is, each subclass contains attributes and methods from its parent
superclass. For example, Figure 2-3 shows that both doctor and patient are subclasses of
person and therefore will inherit the attributes and methods of the person class. Inheri-
tance makes it simpler to define classes. Instead of repeating the attributes and methods
in the doctor and patient classes separately, the attributes and methods that are common

Basic Characteristics of Object-Oriented Systems

Abstract class

Concrete class

Abstract class \

prin-
tware
ation
fingi-
rerely

Concrete class

ind it
e2-2,
ithms

to both are placed in the person class and inherited by those classes below it. Notice how
much more efficient hierarchies of object classes are than the same objects without a
hierarchy in Figure 2-4.

Most classes throughout a hierarchy will lead to instances; any class that has instances
is called a concrete class. For example, if Mary Wilson and Jim Maloney were instances of
the patient class, patient would be considered a concrete class. Some classes do not produce
instances because they are used merely as templates for other more specific classes (espe-

;gcla;ttz; cially those classes located high up in a hierarchy). The classes are referred to as abstract
amon classes. Person would be an example of an abstract class. Instead of creating objects from
es are . person, we would create instances representing the more specific classes of Doctor and
1d the ' Patient, both types of person (see Figure 2-3). What kind of class is the general practitioner
ass to class? Why?

:r and

ncur-
nd-Of ‘ ' 2-1 Encapsulation and Information Hiding

f doc-

Jlasses ‘

yarent me up with a set of examples of using encapsulation this information? What about personal information that
sses of information hiding in everyday life. For example, is you would prefer to be private? How would you prevent
nheri- “any information about yourself that you would not someone from retrieving it?

sthods if everyone knew? How would someone retrieve

nmon

28 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

Without Inheritance With Inheritance

FIGURE 2-4
Inheritance

Polymorphism and Dynamic Binding

Polymorphism means that the same message can be interpreted differently by different
classes of objects. For example, inserting a patient means something different than
inserting an appointment. As such, different pieces of information need to be collected
and stored. Luckily, we do not have to be concerned with how something is done when
using objects. We can simply send a message to an object, and that object will be
responsible for interpreting the message appropriately. For example, if we sent the
message “Draw yourself” to a square object, a circle object, and a triangle object, the
results would be very different, even though the message is the same. Notice in Figure
2-5 how each object responds appropriately (and differently) even though the mes-
sages are identical. .

Polymorphism is made possible through dynamic binding. Dynamic, or late, bind-
ing is a technique that delays typing the object until run-time. As such, the specific
method that is actually called is not chosen by the object-oriented system until the sys-
tem is running. This is in contrast to static binding. In a statically bound system, the type
of object would be determined at compile time. Therefore, the developer would have to
choose which method should be called instead of allowing the system to do it. This is

f why in most traditional programming languages you find complicated decision logic
‘ based on the different types of objects in a system. For example, in a traditional pro-
l gramming language, instead of sending the message “Draw yourself” to the different

2-2 Inheritance

See if you can come up with at least three different three-level inheritance hierarchy using the class.
‘ classes that you might find in a typical business situa- Which of the classes are abstract, if any, and which
tion. Select one of the classes and create at least a ones are concrete?

An insert message is sent
the patient object.

An insert message is sent
to the appointment object.

|l

The Unified Modeling Language, Version 2.0 29

2. The object’s method
responds to the message.

t Name: | Wilson, Mary
S‘egctDovctor:v-v i | Dr. Mathew Anderson [~
pate woDNYYY: (03 26 [2003

Times v hz30em

2. The object’s method 3. The application responds appropriately.
responds to the message.

[GURE 2-5 Polymorphism and Encapsulation

types of graphical objects in Figure 2-5, you would have to write decision logic using a
case statement or a set of if statements to determine what kind of graphical object you
wanted to draw, and you would have to name each draw function differently (e.g., draw-
square, draw-circle, or draw-triangle). This obviously would make the system much
more complicated and more difficult to understand.

THE UNIFIED MODELING LANGUAGE, VERSION 2.0

Until 1995, object concepts were popular but implemented in many different ways by dif-
ferent developers. Each developer had his or her own methodology and notation (e.g.
Booch, Coad, Moses, OMT, OOSE, and SOMA!). Then in 1995, Rational Software
brought three industry leaders together to create a single approach to object-oriented sys-

| See Grady Booch, Object-Oriented Analysis and Design with Applications, 2nd Ed. (Redwood City, CA: Ben-
jamin/Cummings, 1994); Peter Coad and Edward Yourdon, Object-Oriented Analysis, 2" Ed. (Englewood Cliffs,
NJ: Yourdon Press, 1991); Peter Coad and Edward Yourdon, Object-Oriented Design (Englewood Cliffs, NJ: Your-
don Press, 1991); Brian Henderson-Sellers and Julian Edwards, BookTwo of Object-Oriented Knowledge: The
Working Object (Sydney, Australia: Prentice Hall, 1994); James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, and William Lorensen, Object-Oriented Modeling and Design (Englewood Cliffs, NJ, 1991); Ivar
Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard, Object-Oriented Software Engineering: A
Use Case Approach (Wokingham, England: Addison-Wesley, 1992); Ian Graham, Migrating to Object Technology
(Wokingham, England: Addison-Wesley, 1994).

30 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

O UR 2-3 Polymorphism and Dynamic Binding

TURN

Can you think of any way in which you use polymor- does? Do you always perform the task the same way or is
phism and/or dynamic binding in your everyday life? For the method of performance depend on where you are
example, when you are told to do some task, do you when you perform the task?

always perform the task like everyone else you know

N

tems development. Grady Booch, Ivar Jacobson, and James Rumbaugh worked with oth-
ers to create a standard set of diagramming techniques known as the Unified Modeling
Language (UML). The objective of UML is to provide a common vocabulary of object-
oriented terms and diagramming techniques that is rich enough to model any systems
development project from analysis through implementation. In November 1997, the
Object Management Group (OMG) formally accepted UML as the standard for all object
developers. Over the years since, the UML has gone through multiple minor revisions.
The current version of UML, Version 2.0, was accepted by the members of the OMG dur-
ing their spring and summer meetings of 2003.

The Version 2.0 of the UML defines a set of fourteen diagramming techniques used to
model a system. The diagrams are broken into two major groupings: one for modeling
structure of a system and one for modeling behavior. The structure modeling diagrams
include class, object, package, deployment, component, and composite structure diagrams.
The behavior modeling diagrams include activity, sequence, communication, interaction
overview, timing, behavior state machine, protocol state machine, and use case diagrams.?
Figure 2-6 provides and overview of these diagrams.

Depending on where in the development process the system is, different diagrams
play a more important role. In some cases, the same diagramming technique is used
throughout the development process. In that case, the diagrams start off very conceptual
and abstract. As the system is developed, the diagrams evolve to include details that ulti-
mately lead to code generation and development. In other words, the diagrams move from
documenting the requirements to laying out the design. Overall, the consistent notation,
integration among the diagramming techniques, and the application of the diagrams
across the entire development process makes the UML a powerful and flexible language
for analysts and developers. In the remainder of this section, we provide an overview of
the diagramming techniques supported by the UML. In later chapters, we provide more
detail on using a subset of the UML in object-oriented systems analysis and design.

Structure Diagrams

In this section of the chapter, we introduce the static, structure diagrams of the UML 2.0.
As mentioned above, the structure diagrams include the class, object, package, deployment,
component, and composite structure diagrams. Structure diagrams provide a way for rep-
resenting the data and static relationships that are in an information system. Below, we
describe the basic purpose of each of the structure diagrams.

2 The material contained in this section is based on the Unified Modeling Language: Superstructure Version 2.0,
ptc/03-08-02 (www.uml.org). Additional useful references include Michael Jesse Chonoles and James A. Schardt,
UML 2 for Dummies (Indianapolis, IN: Wiley, 2003), Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and

" David Fado, UML 2 Toolkit (Indianapolis, IN: Wiley, 2004), and Kendall Scott, Fast Track UML 2.0 (Berkeley, CA:
Apress, 2004). For a complete description of all diagrams, see www.uml.org.

The Unified Modeling Language, Version 2.0 31

agram Name Used to Primary Phase

lllustrate the relationships between classes modeled in the system. Analysis, Design
Illustrate the relationships between objects modeled in the system. Analysis, Design
Used when actual instances of the classes will better communicate
the model.
Group other UML elements together to form higher level constructs. Analysis, Design,
Implementation
Show the physical architecture of the system. Can also be used to show Physical Design,
software components being deployed onto the physical architecture. Implementation
illustrate the physical relationships among the software components. Physical Design,
Implementation
lllustrate the internal structure of a class, i.e., the relationships among Analysis, Design
the parts of a class.

lllustrate business workflows independent of classes, the flow of activities Analysis, Design
in a use case, or detailed design of a method.

Model the behavior of objects within a use case. Focuses on the time-based Analysis, Design
ordering of an activity.

Model the behavior of objects within a use case. Focuses on the communi- Analysis, Design
cation among a set of collaborating objects of an activity.

Illustrate an overview of the flow of control of a process. Analysis, Design

IHustrate the interaction that takes place among a set of objects and the Analysis, Design
state changes in which they go through along a time axis.

avioral State Machine Examine the behavior of one class. Analysis, Design
ol State Machine lllustrates the dependencies among the different interfaces of a class. Analysis, Design

ase Capture business requirements for the system and to illustrate the inter- Analysis
action between the system and its environment.

URE 2-6 UML 2.0 Diagram Summary

Class Diagrams The primary purpose of the class diagrath is to create-a-vocabulary that
-is used by both the analyst and usets. €lass diagrams typically represent the things, ideas or
concepts that are contained in the application. For example, if you were building a payroll
application, a class diagram would probably contain classes that represent things such as
employees, checks, and the payroll register. The class diagram would also portray the rela-
tionships among classes. The actual syntax of the class diagram is presented in Chapter 7.

%
w

Object Diagrams Object diagrams are very similar to class diagrams. The primary dif-
ference is that an object diagram portrays objects and their relationships: The primary pur=
pose of an object diagram is to allow an analyst to uncover additional details of a class. In
some cases, instantiating a class diagram may aid a user or analyst in discovering additional
relevant attributes, relationships, and/or operations, or possibly discover that some of the
attributes, relationships, or operations have been misplaced. Like the class diagram, the
actual syntax and use of the object diagram is presented in Chapter 7.

Package Diagrams Package diagrams are primarily used to group elements of the other
UML diagrams together into a higher-level construct: a package.-Package diagrams are
essentially class diagrams that only show packages, instead: of classes; and dependency
relationships, instead of the typical relationships shown on class diagrams. For example,
if we had an appointment system for a doctor’s office, it may make sense to group a
patient class with the patient’s medical history class together to form a patient class package.

e

32 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

Furthermore, it could be useful to create a treatment package that contains symptoms of
illnesses, illnesses, and the typical medications that are prescribed for them. We provide
more details in using package diagrams in Chapters 6 through 9.

Deployment Diagrams Deployment diagrams are used to represent the relationships between
the hardware components used in the physical infrastructure of an information system. For
example, when designing a distributed information system that will use a wide area network, a
deployment diagram can be used to show the communication relationships among the differ-
ent nodes in the network. They also can be used to represent the software components and how
they are deployed over the physical architecture or infrastructure of an information system. In
this case, a deployment diagram represents the environment for the execution of the software.
In Chapter 13, we describe designing the physical architecture of an information system and use
an extension to the deployment diagram to represent the design.

Component Diagrams Component diagrams allow the designer to model physical rela-
tionships among the physical modules of code. The diagram when combined with the
deployment diagram can be used to portray the physical distribution of the software mod-
ules over a network. For example, when designing client-server systems, it is useful to show
which classes or packages of classes will reside on the client nodes and which ones will
reside on the server. Component diagrams also can be useful in designing and developing
component-based systems. Since this book focuses on object-oriented systems analysis and
design, we.will.not discuss‘furthet the use of component diagrams,

Composite Structure Diagrams The UML 2.0 provides a new diagram for when the
internal structure of a class is complex: the composite structure diagram. Composite struc-
ture diagrams are used to model the relationships among parts of a class. For example,
when modeling a payroll register, an analyst may want a class that represents the entire
report as well as classes that represent the header, footer, and detail lines of the report. In a
standard class diagram, this would require the analyst to model the payroll register as four
separate classes with relationships connecting them together. Instead, the composite struc-
ture diagram would contain three subclasses: header, footer, and detail lines. Composite
structure diagrams also are useful when modeling the internal structure of a component
for a component-based system.

Often, the composite structure diagram is a redundant modeling mechanism because
its models also can be communicated using packages and package diagrams. Because of
this redundancy, and because we are not covering component-based systems development,
we.will.not.discuss them:further in this book:

YOUR 2-4 Structure Diagrams

Why are structure diagrams considered to be static?
Consider the implementation of a system for the Career
Services department of your university that would sup-
port the student interview and job placement
processes. Briefly describe to your primary contact in
the Career Services department the kinds of informa-

. to understand your expla

tion that the following structure diagrams would com-
municate: A) class, B) object, C) package, D) deploy-
ment, E) component, and F) composite structure. Be
sure to include examples from the Career Services
department so that your non-technical user will be able

nations!

The Unified Modeling Language, Version 2.0 33

Behavior Diagrams

In this section of the chapter, we introduce the dynamic, behavior diagrams of the UML 2.0.
The behavior diagrams included in UML 2.0 are the activity, sequence, communication,
mteractlon overv1ew, timing, behavior state machine, protocol stat. hi

Phey also allow the modeling of the dynamic behavior of individual objects
throughout their lifetime. The behavior diagrams support the analyst in modeling the
functional requirements of an evolving information system.

Activity Dlagrams Acttwty dzagrams prov1de the analyst with the ability to model

also provxde an approach to model parallel processes. Act1v1ty dlagrams are further
described in Chapter 6.

Interaction Diagrams Interaction diagrams portray the interaction among the objects of
an object-oriented information system. UML 2.0 provides four different interaction dia-
grams: sequence, communication, interaction overview, and timing diagrams. Each of
these diagrams is introduced here.

1. Sequence diagrams allow an analyst to portray the dynamic interaction among
objects in an information system. Sequence diagrams are by far the most common kind
of interaction diagram used in object-oriented modeling. They emphasize the time-based
ordering of the activity that takes place with a set of collaborating objects. They are very
useful in helping an analyst understand real-time specifications and complex use cases
(see below). These diagrams can be used to describe both the logical and physical interac-
tions among the objects. As such, they are useful in both analysis and design activities.
We describe sequence diagrams in more detail in Chapter 8.

2. Communication diagrams provide an alternative view of the dynamic interaction
that takes place among the objects in an object-oriented information system. Where
sequence diagrams emphasize the time-based ordering of an activity, communication
diagrams focus on the set of messages that are passed within a set of collaborating
objects. In other words, communication diagrams depict how objects collaborate to sup-
port some aspect of the required functionality of the system. The sequence or time-based
ordering of the messages is shown through a sequence numbering scheme. From a practi-
cal point of view, communication diagrams and sequence diagrams provide the same
information. As such, we describe communication diagrams in more detail in Chapter 8
with the sequence diagrams.

3. Interaction overview diagrams help analysts understand complex use cases. They
provide an overview of a process’s flow of control. Interaction overview diagrams extend
activity diagrams through the addition of sequence fragments from sequence diagrams.
In effect, sequence fragments are treated as if they were activities in an activity diagram.

3 For those who are familiar with traditional structured analysis and design, activity diagrams combine the ideas
that underlie data flow diagrams and system flowcharts. Essentially, they are sophisticated and updated data flow
diagrams. Technically speaking, activity diagrams combine process modeling ideas from many different tech-
niques including event models, statecharts, and Petri Nets. However, UML 2.0’s activity diagram has more in
common with Petri Nets than the other process modeling techniques. For a good description of using Petri Nets
to model business workflows see Wil van der Aalst and Kees van Hee, Workflow Management: Models, Methods,
and Systems (Cambridge, MA: MIT Press, 2002).

34 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

The primary advantage of using interaction overview diagrams is that you can easily
model alternative sequence flows. However, practically speaking, this can be accom-
plished using activity diagrams and use cases instead. Due to their limited use, interac-
tion overview diagrams-ate not.described in:more-detail vbo

4. Timing diagrams portray the interaction between objects along a time axis. The
primary purpose of the timing diagram is to show the change of state of an object in
response to events over time. They tend to be very useful when developing real-time or
embedded systems. However, like interaction overview diagrams, due to their limited use,

srasas tmote detsilinetiiiebook

]

-\ tocolstate machines por
ichano 1 : nd. 3

1. Behavior state machines provide a method for modeling the different states, or sets
of values, that instances of a class may go through during their lifetime. For example, a
patient can change over time from being a New Patient to a Current Patient to a Former
Patient. Each of these “types” of patients is really a different state of the same patient. The
different states are connected by events that cause the instance (patient) to transition from
one state to another. We describe behavior state machines in more detail in Chapter 8.

2. Protocol state machines support the analyst in designing dependencies among ele-
ments of the class’ interface. For example, typically speaking you must open a file or database
before querying or updating it. Unlike behavior state machines, protocol state machines may
be associated with component ports or class interfaces. Protocol state machines are very spe-
cialized. As such, we.do.net.provide any more detail.on.them.in.this-boo

Use Case Diagrams Use case diagrams allow the analyst to model the interaction of an infor-
mation system and its environment. The environment of an information system includes both
the end user and any external system that interacts with the information system. The primary
use of the use case diagram is to provide a means to document and understand the require-
ments of the evolving information system. Use cases and use case diagrams are some of the
most important tools that are used in object-oriented systems analysis and design. We describe
use cases and use case diagrams in more detail later in this chapter and in Chapter 6.

2-5 Behavior Diagrams

Why are behavior diagrams considered to be static? Con- would communicate: A) activity, B) sequence, C) communi-
sider the implementation of a system for the Career Services cation, D) interaction overview, E) timing, F) behavior state
department of your university that would support the student machines, G) protocol state machines, and H) use case. Be
interview and job placement processes. Briefly describe to sure to include examples from the Career Services depart-
your primary contact in the Career Services department the ment so that you non-technical user will be able to under-
kinds of information that the following structure diagrams stand your explanations!

4 UML 2.0 state machines are based on work by David Harel. See David Harel, On Visual Formalisms, CACM, 31
(5) (May 1988), 514-530 and David Harel, A Visual Formalism for Complex Systems, Science of Computer Pro-
gramming, 8, (1987), 231-274.

Object-Oriented Systems Analysis and Design 35

Extension Mechanisms

As large and as complete as the UML is, it is impossible for the creators of the UML to
anticipate all potential uses. Fortunately, the creators of the UML also have provided a set
of extension mechanisms. These include stereotypes, tagged values, constraints, and pro-
files. Each of these is described next.

Stereotypes A stereotype provides the analyst with the ability to incrementally extend the
UML usmg the model elements already in the UML. A stereotype is shown as a text 1tem

55 g 8S;:
‘gnm%/e w111 use stereotypes in Chapter 12 in conjunction with a spec1al form of the
behavior state machine: the window navigation diagram.

Tagged Values In the UML, all model elements have properties that describe them. For
example, all elements have a name. There are times that it is useful to add properties to the
base elements. Tigge ps:areisedito eWr properties to 4 baseelement. For exam-
ple, if a project team was 1nterested in tracing the authorship of each class in a class dia-
gram, the project team could extend the class element to include an author property. It is
also possible to associate tagged values with specific stereotypes. In this manner, when the
analyst applies a stereotype to a model element, all of the additional tagged values associ-
ated w1th the stereotype also are applied. We:donot.describe.

oy ehel“efnents Constramts are typlcally
modeled using the Object Constramt Language (OCL).> We return to a discussion of con-
straints and object-oriented systems analysis and design in Chapter 10.

Profiles Profiles allow the developer to group a set of model elements that have been
extended using stereotypes, tagged values, and/or constraints into a package. Profiles have
been used to create modeling extensions that can address specific types of implementation
platforms, such as .NET, or specific modeling domains, such as embedded systems. Profiles
are simply a convenience. In this text, we:do:not:further ibet

JECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN

Object-oriented approaches to developing information systems, technically speaking, can
use any of the traditional methodologies presented in Chapter 1 (waterfall development,
parallel development, phased development, prototyping, and throwaway prototyping).
However, the object-oriented approaches are most associated with a phased development
RAD methodology. The primary difference between a traditional approach like structured
design and an object-oriented approach is how a problem is decomposed. In traditional
approaches, the problem decomposition process is either process-centric or data-centric.
However, when modeling real-world systems, processes and data are so closely related that
it is difficult to pick one or the other as the primary focus. Based on this lack of congruence

5 For more specifics on the OCL, see Jos Warmer and Anneke Kleppe, The Object Constraint Language: Precise
Modeling with UML (Reading, MA: Addison-Wesley, 1999) and the UML 2.0 OCL Specification, ptc/03-10-14
(www.uml.org <http://www.uml.org/>).

36 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

with the real-world, new object-oriented methodologies have emerged that use the RAD-
» based sequence of SDLC phases but attempt to balance the emphasis between process and
I data by focusing the decomposition of problems on objects that contain both data and
| processes. Both approaches are valid approaches to developing information systems. In this
; book, we focus only on object-oriented approaches.

According to the creators of UML, Grady Booch, Ivar Jacobson, and James Rum-
L baugh,” any modern object-oriented approach to developing information systems must be
lf L (1) use-case driven, (2) architecture-centric, and (3) iterative and incremental.

Use-Case Driven

Use-case driven means that use cases are the primary modeling tool to define the behavior
of the system. A use case describes how the user interacts with the system to perform some
activity, such as placmg an order, making a reservatlon or searchm for information. The

contrast, the process model dlagrams used by traditional structured and RAD methodolo-
gies are far more complex because they require the system analyst and user to develop
models of the entire system. With traditional methodologies, each business activity is
decomposed into a set of subprocesses, which are, in turn, decomposed into further sub-
processes, and so on. This goes on until no further process decomposition makes sense, and
it often requires dozens of pages of interlocking diagrams. In contrast, use cases focus on
only one activity at a time, so developing models is much simpler.® We describe use cases
and use case diagrams in Chapter 6.

Architecture Centric

Any modern approach to systems analysis and design should be architecture centric.
Architecture centric means that the underlying software architecture of the evolving sys-
tem specification drives the specification, construction, and documentation of the sys-
tem. Modern object-oriented systems analysis and design approaches should support at
least three separate but mterrelated architectural views of a system: functional, static,

and dynamic. ; .
The functional view describes the external behavior of the system from the perspective .
of the user. Use cases and use case diagrams are the primary approach used to depict the 1

functional view. Also, in some cases, activity diagrams are used to supplement use cases. The
static view describes the structure of the system in terms of attributes, methods, classes, and

_ relationships. The structure diagrams portray the static view of an evolving object-oriented
information system. The dynamic view describes the internal behavior of the system in terms
of messages passed among objects and state changes within an object. The dynamic view is
represented in UML by behavior diagrams.

6 See Alan Dennis and Barbara Haley Wixom, Systems Analysis and Design: An Applied Approach, 2 Ed, (New

York: Wiley, 2003) for a description of the traditional approaches.

<‘[| hig 7 Grady Booch, Ivar Jacobson, and James Rumbaugh, The Unified Modeling Language User Guide (Reading, MA

li il Addison-Wesley, 1999).

i 8 For those of you that have experience with traditional structured analysis and design, this will be one of the

i most unusual aspects of object-oriented analysis and design using UML. Structured approaches emphasize the
decomposition of the complete business process into subprocesses and sub-subprocesses. Object-oriented

t | approaches stress focusing on just one use case activity at a time and distributing that single use case over a set

inlll of communicating and collaborating objects. Therefore, use case modeling may seem initially unsettling or

I counter-intuitive, but in the long run this single focus does make analysis and design simpler.

Qs

o v et

O Inwpn s

Object-Oriented Systems Analysis and Design 37

Iterative and Incremental

Modern object-oriented systems analysis and design approaches emphasize iterative
and incremental development that undergoes continuous testing and refinement
throughout the life of the project. Each iteration of the system brings it closer and closer
to real user needs.

The Unified Process

The Unified Process is a specific methodology that maps out when and how to use the
various UML techniques for object-oriented analysis and design. The primary con-
tributors were Grady Booch, Ivar Jacobsen, and James Rumbaugh of Rational.
Whereas the UML provides structural support for developing the structure and
behavior of an information system, the Unified Process provides the behavioral sup-
port. The Unified Process, of course, is use-case driven, architecture centric, and iter-
ative and incremental.

two-dimensional systems development process described by a.
set of phases and workflows,The phases are inception, elaboration, construction, and tran-
sition. The workflows include business modeling, requirements, analysis, design, imple-

el 0 lrsv-G-YUSN" mentation, test, deployment, project management, configuration and change management,
_ and environment. In the remainder of this section, we describe the phases and workflows
) (/@‘\g'ﬁ’ v wiN< of the Unified Process.® Figure 2-7 depicts the Unified Process.

(< 'Wr,\,, NS 05\ " Phases The Pphases of the Unified Process support an analyst in developing information

systems in an iterative and incremental manner. The phases describe how an information
system evolves through time. Depending on which development phase the evolving system
is currently in, the level of activity will vary over the workflows. The curves, in Figure 2-7,
associated with each workflow approximates the amount of activity that takes place during
the specific phase. For example, the inception phase primarily involves the business mod-
eling and requirements workflows, while practically ignoring the test and deployment
workflows. Each phase contains a set of iterations, and each iteration uses the various
workflows to create an incremental version of the evolving information system. As the sys-
tem evolves through the phases, it improves and becomes more complete. Each phase has
objectives, a focus of activity over the workflows, and incremental deliverables. Each of the
phases is described as follows.

Inception In many ways, the inception phase is very similar to the planning phase of a
traditional SDLC approach. In this phase, a business case is made for the proposed system.
This includes feasibility analysis that should answer questions such as the following:

8 Do we have the technical capability to build it? (technical feasibility)
@ If we build it, will it provide business value? (economic feasibility)
@ If we build it, will it be used by the organization? (organizational feasibility)

9 The material in this section is based on Khawar Zaman Ahmed and Cary E. Umrysh, Developing Enterprise Java
Applications with J2EE and UML (Boston, MA: Addison-Wesley, 2002); Jim Arlow and Ila Neustadt, UML and
The Unified Process: Practical Object-Oriented Analysis & Design (Boston, MA: Addison-Wesley, 2002); Peter Eeles,
Kelli Houston, Wojtek Kozacynski, Building J2EE Applications with the Rational Unified Process, (Boston, MA:
Addison-Wesley, 2003); Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unified Software Development
Process (Reading, MA: Addison-Wesley, 1999); Phillipe Krutchten, The Rational Unified Process: An Introduction,
2nd Ed. (Boston, MA: Addison-Wesley, 2000).

s Al ‘W"/c'ir//»’m;)

L7

38 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

ZISGS

NBusiness Modeling

Requirements

ey

2"fvu\« Y &m(«fv i \ &{ N

Analysis

Design

Implementation

Test

Deployment

- Phas S .

Conflguratlon and
Change Management

Supportmv Workflmvs

Elahoration Constmction

Project Management

Environment

Iter Iter Iter Iter Iter
j j+1

B s |t

i i+1

A\ &

To answer these questions, the development team performs work related primarily to
the business modeling, requirements, and analysis workflows. In some cases, depending
on the technical difficulties that could be encountered during the development of the sys-
tem, a throw-away prototype is developed. This implies that the design, implementation,
and test workflows also could be involved. The project management and environment
supporting workflows are very relevant to this phase. The primary deliverables from the
inception phase are: (1) a vision document that sets the scope of the project, identifies the
primary requirements and constraints, sets up an initial project plan, and describes the
feasibility of and risks associated with the project, and (2) the adoption of the necessary
environment to develop the system.

Elaboration When one typically thinks about object-oriented systems analysis and
design, the activities related to the elaboration phase of the Unified Process are the most
relevant. The analysis and design workflows are the primary focus during this phase. The
elaboration phase continues with developing the vision document, including finalizing
the business case, revising the risk assessment, and completing a project plan in sufficient
detail to allow the stakeholders to be able to agree with constructing the actual final sys-
tem. It deals with gathering the requirements, building the UML structural and behavioral

-

Object-Oriented Systems Analysis and Design 39

models of the problem domain, and detailing the how the problem domain models fit into
the evolving system architecture. Developers are involved with all but the deployment
engineering workflow in this phase. As the developers iterate over the workflows, the
importance of addressing configuration and change management becomes apparent.
Also, the development tools acquired during the inception phase become critical to the
success of the project during this phase.!? The primary deliverables of this phase include
(1) the UML structure and behavior diagrams and (2) an executable of a baseline version
of the evolving information system. The baseline version serves as the foundation for all
later iterations. By providing a solid foundation at this point in time, the developers can
begin to grow the system toward its completion in the construction and transition phases.

Construction The construction phase, as expected by its name, is heavily focused on
programming the evolving information system. As such, it is primarily concerned with the
implementation workflow. However, the requirements, analysis, and design workflows also
are involved with this phase. It is during this phase that missing requirements are uncov-
ered, and the analysis and design models are finally completed. Typically, there are itera-
tions of the workflows during this phase, and during the last iteration, the deployment
workflow kicks into high gear. The configuration and change management workflow, with
its version control activities, becomes extremely important during the construction phase.
At times, an iteration may have to be rolled back. Without good version controls, rolling
back to a previous version (incremental implementation) of the system is nearly impossi-
ble. The primary deliverable of this phase is an implementation of the system that can be
released for beta and acceptance testing.

Transition Like the construction phase, the transition phase addresses aspects typically
associated with the implementation phase of a traditional SDLC approach. Its primary focus
is on the testing and deployment workflows.Essentially, the business modeling, require-
ments, and analysis workflows should have been completed in earlier iterations of the evolv-
ing information system. Depending on the results from the testing workflow, it is possible
that some redesign and programming activities on the design and implementation work-
flows could be necessary, but they should be minimal at this point in time. From a manage-
rial perspective, the project management, configuration and change management, and
environment are involved. Some of the activities that take place are beta and acceptance test-
ing, fine tuning the design and implementation, user training, and the actual rolling out of
the final product onto a production platform. Obviously, the primary deliverable is the
actual executable information system. The other deliverables include user manuals, a plan to
support the users, and a plan for upgrading the information system in the future.

Workflows< The workflows describe the tasks or activities that a developer performs to evolve
an information system over time. The workflows of the Unified Process are grouped into two
broad categories: engineering and supporting. We describe each of the workflows as follows.

Engineering Workflows The engineering workflows include business modeling,
requirements, analysis, design, implementation, test, and deployment workflows. The engi-.
neerinig workflows deal with the activities. roduce the technical product (i.c., the

information system). Next, we describe each engineering workflow.

10 With UML being comprised of fourteen different, related diagramming techniques, keeping the diagrams
coordinated and the different versions of the evolving system synchronized is typically beyond the capabilities of
a mere mortal systems developer. These tools typically include project management and CASE (Computer Aided
Software Engineering) tools. We describe the use of these tools in Chapter 3.

40 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

Business Modeling. The Business modeling workflow uncovers problems and identifies
potential projects within a user organization. This workflow aids management in under-
standing the scope of the projects that can improve the efficiency and effectiveness of a user
organization. The primary purpose of business modeling is to ensure that both developer
and user organizations understand where and how the to-be-developed information sys-
tem fits into the business processes of the user organization. This workflow primarily is
executed during the inception phase to ensure that we develop information systems that
make business sense. The activities that take place on this workflow are most closely asso-
ciated with the planning phase of the traditional SDLC; however, requirements gathering
and use case and business process modeling techniques also are used to understand the
business situation.

Requirements. In the Umﬁed Process, the requzrements workflow includes ehcrtmg both

‘and question s&(see Chapter 5). As you should expect, the requlrements workﬂow is
utlhzed the most during the inception and elaboration phases. The identified requirements
are very useful in developing the vision document and the use cases used throughout the
development process. It should be stressed that additional requirements tend to be discov-
ered throughout the development process. In fact, only the transition phase tends to have
few if any additional requirements identified.

Analysis. The analysis workflow predominantly addresses creating an analysis model of
the problem domain. In the Unified Process, the analyst begins designing the architecture
associated with the problem domain, and using the UML, the analyst creates structural and
behavioral diagrams that depict a descrlptron of the problem domain classes and ,th,elr
mteractlons 'Eh “pnmarypurpose ofth] :

“ veren; mg@ If they are not careful analysts canbcreate analysts paralyszs, Wthh occurs
when the pro;ect becomes so bogged down with analysis that the system is never actually

ventlng the wheel” when creating the structural and behavior
workflow is predominantly associated with the elaboration phase, but hke the require-
ments workflow, it is possible that additional analysis will be required throughout the
development process.

B Design. The design workflow transitions the analysis model into a form that can be
used to implement the system: the design model. Where the analysis workflow concen-
trated on understanding the problem domain, the design workflow, focuses on develop-
ing a solution that will execute in a specific environment. Basically, the design workflow
simply enhances the evolving information system description by adding classes that
address the env1ronment of the mformat10n system to the evolvmg ana.lysm model. As

ity is associated

w1th the elaboratlon and construction phases of the Unified Process.

® Implementation. The primary purpose of the implementation workflow is to create
an executable solution based on the design model (i.e., programming). This includes not
only writing new classes, but also incorporating reusable classes from executable class
libraries into the evolving solution. As with any programming activity, testing of the new

Object-Oriented Systems Analysis and Design 41

classes and their interactions with the incorporated reusable classes must occur. Finally,
in the case of multiple groups performing the implementation of the information system,
the implementers also must integrate the separate, individually tested, modules to create
an executable version of the system. The implementation workflow primarily is associ-
ated with the elaboration and construction phases.

Test. The primary purpose of the test workflow is to increase the quality of the evolv-
ing system. As such, testing goes beyond the simple unit testing associated with the imple-
mentation workflow. In this case, testing also includes testing the integration of all modules
used to implement the system, user acceptance testing, and the actual alpha testing of the
software. Practically speaking, testing should go on throughout the development of the sys-
temn; testing of the analysis and design models are involved during the elaboration and con-
struction phases, while implementation testing is performed primarily during the
construction and, to some degree, transition phases. Basically, at the end of each iteration
during the development of the information system, some type of test should be performed.

& Deployment. The deployment workflow is most associated with the transition phase
of the Unified Process. The deployment workflow includes activities, such as software
packaging, distribution, installation, and beta testing. When actually deploying the new
information system into a user organization, the developers may have to convert the cur-
rent data, interface the new software with the existing software, and provide end user
training on the use of the new system.

Supporting Workflows The supporting workflows include the project management,
configuration and change management, and the environment workflows. The supporting

workflows focus on the managerial aspects of information system development.

@ Project management. While the other workflows associated with the Unified
Process technically are active during all four phases, the project management workflow is
the only truly cross-phase workflow. The development process supports incremental and
iterative development, so information systems tend to grow or evolve over time. At the
end of each iteration, a new incremental version of the system is ready for delivery. The
project management workflow is quite important due to the complexity of the two-
dimensional development model of the Unified Process (workflows and phases). This
workflow’s activities include risk identification and management, scope management,
estimating the time to complete each iteration and the entire project, estimating the cost
of the individual iteration and the whole project, and tracking the progress being made
toward the final version of the evolving information system.

@ Configuration and change management. The primary purpose of the configuration
and change management workflow is to keep track of the state of the evolving system. In a
nutshell, the evolving information system comprises a set of artifacts that includes, for
example, diagrams, source code, and executables. During the development process, these
artifacts are modified. The amount of work, and hence dollars, that goes into the develop-
ment of the artifacts is substantial. As such, the artifacts themselves should be handled as
any expensive asset would be handled—access controls must be put into place to safeguard
the artifacts from being stolen or destroyed. Furthermore, since the artifacts are modified
on a regular, if not continuous, basis, good version control mechanisms should be estab-
lished. Finally, a good deal of project management information needs to be captured (e.g.,
author, time, and location of each modification). The configuration and change manage-
ment workflow is associated mostly with the construction and transition phases.

@ Environment. During the development of an information system, the develop-
ment team needs to use different tools and processes. The environment workflow

42 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

addresses these needs. For example, a computer aided software engineering tool that
supports the development of an object-oriented information system via the UML could
be required. Other tools necessary would include programming environments, project
management tools, and configuration management tools. The environment workflow
includes acquiring and installing these tools. Even though this workflow can be active
during all of the phases of the Unified Process, it should primarily be involved with the
inception phase.

A MINIMALIST APPROACH TO OBJECT-ORIENTED SYSTEMS
ANALYSIS AND DESIGN WITH UML 2.0

The UML is an object-oriented modeling language used to describe information sys-
tems. It provides a common vocabulary of object-oriented terms and a set of diagram-
ming techniques that are rich enough to model any systems development project from
analysis through implementation. Although the UML defines a large set of diagram-
ming techniques, this book focuses on a smaller set of the most commonly used tech-
niques. It should be stressed that UML is nothing more than a notation. Although
unlikely, it is possible to develop an information system using a traditional approach
with UML. The UML does not dictate any formal approach to developing information
systems, but its iterative nature is best-suited to RAD-based approaches such as phased |
development (see Figure 1-4). A popularRAD-based approach that usesthe UMLis the .

Benefits of Object-Oriented Systems Analysis and Design

So far we have described several major concepts that permeate the object-oriented
approach, in general, and the UML 2.0 and Unified Process, in particular, but you may be
wondering how these concepts affect the performance of a project team. The answer is sim-
ple. Concepts in the object-oriented approach enable analysts to break a complex system
into smaller, more manageable modules, work on the modules individually, and easily piece
the modules back together to form an information system. This modularity makes system
development easier to grasp, easier to share among members of a project team, and easier
to communicate to users who are needed to provide requirements and confirm how well
the system meets the requirements throughout the SDLC.

By modularizing system development, the project team actually is creating reusable pieces
that can be plugged into other systems efforts, or used as starting points for other projects.
Ultimately, this can save time because new projects don’t have to start completely from scratch.

Finally, many people argue that “object-think” is a much more realistic way to think
about the real world. Users typically do not think in terms of data or process; instead, they
see their business as a collection of logical units that contain both—so communicating in
terms of objects improves the interaction between the user and the analyst or developer.
Figure 2-8 summarizes the major concepts of the object-oriented approach and how each
concept contributes to the benefits.

Extensions to the Unified Process

As large and as complex as the Unified Process is, many authors have pointed out a set
of critical weaknesses. First, the Unified Process does not address staffing, budgeting, or
contract management issues. These activities were explicitly left out of the Unified
Process. Second, the Unified Process does not address issues relating to maintenance,

ition
ased

sthe

:nted
ay be
sim-
stem
piece
rstem
2asier
1 well

Jieces
jects.
ratch.

taset
ng, or
nified
1ance,

pl

psulation and informa-
hiding

orphism and Dynamic

, objects, methods,

A Minimalist Approach to Object-Oriented Systems Analysis and Design with UML 2.0 43

Supports Leads to.
A more realistic way for people to ® Better communication between user and analyst or
think about their business developer
& Highly cohesive units that contain 8 Reusable objects
both data and processes B Benefits from having a highly cohesive system

(see cohesion in Chapter 13)

Reusable objects

Fewer ripple effects from changes within an
object or in the system itself

Benefits from having a loosely coupled system
design (see coupling in Chapter 13)

B Loosely coupled units

@ Allows us to use classes as stan- Less redundancy
dard templates from which other @ Faster creation of new classes

classes can be built @ Standards and consistency within and across
development efforts

B Ease in supporting exceptions

A Simpler programming of events
1 Ease in replacing or changing objects in a system

@ Fewer ripple effects from changes within an
object or in the system itself

@ Minimal messaging that is inter-
preted by objects themselves

@ Allows users and analysts to @ Better understanding and gathering of user needs
focus on how a user will interact ® Better communication between user and analyst
with the system to perform a sin-
gle activity

B Viewing the evolving system Better understanding and modeling of user needs
from multiple points of view B More complete depiction of information system

@ Continuous testing and refine-
ment of the evolving system

Meeting real needs of users
Higher quality systems

RE 2-8 Benefits of the Object Approach

operations, or support of the product once it has been delivered. As such, it is not a
complete software process; it is only a development process. Third, the Unified Process
does not address cross- or inter- project issues. Considering the importance of reuse in
object-oriented systems development and the fact that in many organizations employ-
ees work on many different projects at the same time, leaving out inter-project issues is
a major omission.

To address these omissions, Ambler and Constantine suggest the addition of a Pro-
duction phase and two workflows: the Operations and Support workflow and the Infra-
structure Management workflow (see Figure 2-9).!! In addition to these new workflows,
the test, deployment and environment workflows are modified, and the project manage-
ment and configuration and change management workflows are extended into the pro-
duction phase. These extensions are based on alternative object-oriented software

11 §,W. Ambler and L.L. Constantine, The Unified Process Inception Phase: Best Practices in Implementing the U
(CMP Books, 2000); S.W. Ambler and L.L. Constantine, The Unified Process Elaboration Phase: Best Practices in
Implementing the UP (CMP Books, 2000); S.W. Ambler and L.L. Constantine, The Unified Process Construction
Phase: Best Practices in Implementing the UP (CMP Books, 2000); S.W. Ambler and L.L. Constantine, The Unified
Process Transition and Production Phases: Best Practices in Implementing the UP (CMP Books, 2002).

44 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

Engineering Workflows

Construction

Phases

Business Modeling

Requirements

Analysis

Design

Implementation

Test

Deployment

Supporting Warkflows

Phases Inception Elaboration

Configuration and :
Change Management |

Project Management

Environment

Operations and Support

- .j.".,”i..../.f‘.---a‘;;...

.
Infrastructure '
Management T
i)
!

[l
'
'
.
1
)
1
1
1
L
L
1
t
1
[
1
]
T
1
'
[
1
1
.
T
i

,
Iter Ilter | lter © ...

1 i i+1

FIGURE 2-9 The Enhanced Unified Process

processes: the OPEN process and the Object-Oriented Software Process.!? The new phase,
new workflows, and the modifications and extensions to the existing workflows are
described next.

- Production Phase The production phase is concerned primarily with issues related

X to the software product after it has been successfully deployed. As you should expect,

4 \N_vy) the phase focuses on issues related to updating, maintaining, and operating the soft-

%(\g\\y ware. Unlike the previous phases, there are no iterations or incremental deliverables. If

S

'\ 12 S 'W. Ambler, Process Patterns—Building Large-Scale Systems Using Object Technology (Cambridge, UK: SIGS
Books/Cambridge University Press, 1998); S.W. Ambler, More Process Patterns—Delivering Large-Scale Systems
Using Object Technology (Cambridge, UK: SIGS Bdoks/Cambridge University Press, 1999); I. Graham, B. Hen-
derson-Sellers, and H. Younessi, The OPEN Process Specification (Harlow, UK: Addison-Wesley, 1997); B. Hen-
derson-Sellers and B. Unhelkar, OPEN modeling with UML (Harlow, UK: Addison-Wesley, 2000).

1s¢,
are

IGS
tems
{en-
{en-

A Minimalist Approach to Object-Oriented Systems Analysis and Design with UML 2.0 45

a new release of the software is to be developed, then the developers must begin a new
run through the first four phases again. Based on the activities that take place during
this phase, no engineering workflows are relevant. The supporting workflows that are
active during this phase include the configuration and change management workflow,
the project management workflow, the new operations and support workflow, and the
infrastructure management workflow.

Operations and Support Workflow The operations and support workflow, as you might

BpoLin sobtware and pugrat-
istActivities include creating plans for the operation and sup-
port of the software product once it has been deployed, creating training and user
documentation, putting into place necessary backup procedures, monitoring and optimiz-
ing the performance of the software, and performing corrective maintenance on the soft-
ware. This workflow becomes active during the construction phase and increases in level of
activity throughout the transition and finally, the production phase. The workflow finally
drops off when the current version of the software is replaced by a new version. Many devel-
opers are under the false impression that once the software has been delivered to the cus-
tomer, their work is finished. In most cases, the work of supporting the software product is
much more costly and time consuming than the original development. As such, as a devel-
oper, your work may have just begun.

Infrastructure Management Workflow The infrastructure management workflow’s
primary purpose is to support the development of the infrastructure necessary to
develop object-oriented systems. Activities. like development. and modification of
libraries; standards; and énterprise:models-are very important, When the development
and maintenance of a problem domain architecture model goes beyond the scope of a
single project and reuse is going to occur, the infrastructure management workflow is
essential. Another very important set of cross-project activities is the improvement of
the software development process. Since the activities on this workflow tend to affect
many projects and the Unified Process only focuses on a specific project, the Unified
Process tends to ignore these activities (i.e., they are simply beyond the scope and pur-
pose of the Unified Process).

Existing Workflow Modifications and Extensions In addition to the workflows that
were added to address deficiencies contained in the Unified Process, existing workflows had
to be modified and/or extended into the production phase. These workflows include the
test, deployment, environment, project management, and configuration and change man-
agement workflows. Each.of the:enhancer

E

Test For information systems of high quality to be developed, testing should be done on
every deliverable, including those created during the inception phase. Otherwise, less than
quality systems will be delivered to the customer.

Deployment In most corporations today, legacy systems exist, and these systems have
databases associated with them that must be converted to interact with the new systems.
Due to the complexity of deploying new systems, the conversion requires significant
planning. As such, the activities on the deployment workflow need to begin in the incep-
tion phase instead of waiting until the end of the construction phase as suggested by the
Unified Process.

46 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

Environment The environment workflow needed to be modified to include activities
related to setting up the operations and production environment. The actual work per-
formed is similar to the work related to setting up the development environment that was
performed during the inception phase. In this case, the additional work is performed dur-
ing the transition phase.

Project Management Even though this workflow does not include staffing the project,
managing the contracts among the customers and vendors, and managing the project’s
budget, these activities are crucial to the success of any software development project. As
such, we suggest extending project management to include these activities. Furthermore,
this workflow should additionally occur in the production phase to address issues such as
training, staff management, and client relationship management.

Configuration and Change Management The configuration and change management
workflow is extended into the new production phase. Activities performed during the pro-
duction phase include identifying potential improvements to the operational system and
assessing the potential impact of the proposed changes. Once these changes have been
identified and their impact understood, the developers can schedule the changes to be
made and deployed with future releases.

The Minimalist Object-Oriented Systems Analysis and Design Approach

As we stated previously, object-oriented systems analysis and design (OOSAD)
approaches are based on a phased-development RAD approach. However, because of the
iteration across the functional, static, and dynamic views of the evolving information
system, an actual object-oriented development process tends to be more complex than
typical phased-development RAD approaches. For example, the two-dimensional model
of the Unified Process and the identified extensions is much more complex than a typi-
cal phased-development RAD approach (compare Figures 1-4 and 2-9). From a learning
perspective, the complexity of the enhanced Unified Process makes putting it into prac-
tice in the classroom practically impossible. As such, we have followed a minimalist
style!* of presenting a generic approach to OOSAD. The minimalist OOSAD
(MOOSAD) approach that we present in this section is based on the Unified Process as
extended by the processes associated with the OPEN Process and the Object-Oriented
Software Process approaches to object-oriented systems development. We also have
included concepts from XP! to help in controlling the complexity of the development
process. Finally, due to the size and complexity of the UML, we only use a minimal set of
the UML with our minimalist approach.!®

Figure 2-10 portrays our modified phased-development RAD-based approach. The
solid lines in Figure 2-10 represent information flows from one step in our approach to

13 John M. Carrol, The Nurnberg Funnel: Designing Minimalist Instruction for Practical Computer Skill (Cam-
bridge, MA: MIT Press, 1990).)

14 For more information, see K. Beck, eXtreme Programming Explained: Embrace Change (Reading, MA: Addison-Wes-
ley, 2000), M. Lippert, S. Roock, and H. Wolf, eXtreme Programming in Action: Practical Experiences from Real World
Projects (New York: Wiley, 2002), or online at www.extremeprogramming.com. Also, see discussion in Chapter 1.

15 In many places, the UML is not sufficient for our purposes. For example, the UML does not have any useful
diagrams to design user interfaces. In cases where the UML is not sufficient, we will use extensions. However, our
overall intention is to minimize both the size and complexity of the UML for learning purposes. For more infor-
mation on the UML see www.uml.org.

ies

ted

ave

A Minimalist Approach to Object-Oriented Systems Analysis and Design with UML 2.0 47

another step. The dashed lines represent feedback from a later step to an earlier one. For
example, plans flow from the planning step into the requirements determination and use
case development step, and feedback from the requirements determination and use case
development step flows back to the planning step.

———————

-

Analysis

48 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

SUMMARY

The first step of the approach is planning. If you will recall, planning deals with
understanding why an information system should be built, and determining how the
project team will go about building it. The second step of the approach is requirements
determination and use case development. As mentioned above, use cases identify and com-
municate the high-level requirements for the system (i.e., they provide a functional or
external behavioral view of the system). Use cases and the use case model drive the
remaining steps in our approach (i.e., all of the information required from the remain-
ing steps in our approach is derived from the use cases and the use case model).

Next, the developers of the system perform a build. Each build makes incremental
progress toward delivering the entire system. The first build is based on the use cases with
the highest priority. Builds are performed until the system is complete. Each build com-
prises an analysis, design, and implementation step. Each build provides feedback to the
requirements determination and use case development step and delivers a functional sys-
tem to the next build and a set of patterns that can be included in the library.!6 Later builds
incorporate additional lower-priority and newly identified use cases. Again, each build is
based on the remaining use cases with the highest priority. For project management pur-
poses, a build utilizes the idea of timeboxing.'” Typically, in object-oriented systems devel-
opment, the time frame for each timebox varies from one to two weeks to one to two
months, depending on the size and complexity of the project.

Figure 2-11 maps the enhanced Unified Process’s phases and workflows into our
minimalist approach and the relevant chapters in which the material is covered. We use
our minimalist OOSAD approach in this textbook only to simplify the learning experi-
ence. You should realize that a two-dimensional model of the development process is
more realistic in practice.

As Figure 2-11 shows, in this text we are focused primarily in the area associated with
the elaboration phase and the requirements, analysis, design, and project management
workflows of the extended Unified Process. In many object-oriented systems development
environments today, code generation is supported. Thus, from a business perspective, we
believe the activities associated with these workflows are the most important. The remain-
der of the book is organized around the steps in our MOOSAD approach (see Figure 2-12).

Today, the most exciting change to systems analysis and design is the move to object-
oriented techniques, which view a system as a collection of self-contained objects that
have both data and processes. However, the ideas underlying object-oriented tech-
niques are simply ideas that have either evolved from traditional approaches to systems
development or they are old ideas that have now become practical due to the cost-per-
formance ratios of modern computer hardware in comparison to the ratios of the past.
Today, the cost of developing modern software is composed primarily of the cost asso-
ciated with the developers themselves and not the computers. As such, object-oriented
approaches to developing information systems hold out much promise in controlling
these costs.

16 A pattern is a useful group of collaborating classes that provide a solution to a commonly occurring problem.
We describe the use of patterns in more detail in Chapter 7.

17 Timeboxing sets a fixed deadline for a project and delivers the system by that deadline no matter what, even if
the functionality needs to be reduced. Timeboxing ensures that project teams don’t get hung up on the final “fin-
ishing touches” that can drag out indefinitely. Timeboxing is covered in more detail in Chapter 4.

uilds
ild is
pur-
evel-
) two

) our
e use
peri-
ess is

with
ment
ment
e, we
nain-
2-12).

bject-
s that
tech-
stems
t-per-
: past.
asso-
ented
olling

-oblem.

,even if
1al “fin-

Summary 49

Inception Planning
Requirements Determination & Use Case Development 3-6
Elaboration Requirements Determination & Use Case Development 5-13
Analysis
Design
Construction Implementation 11,14
Transition Implementation 14,15
Installation
Production Installation 15

Business Modeling Planning 3, 5-7
Requirements Requirements Determination & Use Case Development 5-7,12
Analysis Analysis 6-8
Design Design 9-13
Implementation Implementation 11,14
Test Implementation 14
Deployment Installation 15

Project Management Across Steps 3,4,6,15
Configuration and Change Management Across Steps 3,15
Environment Across Steps 4
Operations and Support Installation 15
Infrastructure Management Across Steps 4

Basic Characteristics of Object-Oriented Systems

An object is a person, place, or thing about which we want to capture information. Each
object has attributes that describe information about it and behaviors, which are described
by methods that specify what an object can do. Objects are grouped into classes, which are
collections of objects that share common attributes and methods. The classes can be
arranged in a hierarchical fashion in which low-level classes, or subclasses, inherit attrib-
utes and methods from superclasses above them to reduce the redundancy in development.
Objects communicate with each other by sending messages, which trigger methods. Poly-
morphism allows a message to be interpreted differently by different kinds of objects. This
form of communication allows us to treat objects like black boxes and ignore the inner
workings of the objects. The idea of concealing an object’s inner processes and data from
the outside is known as encapsulation. The benefit of these object concepts is a modular,
reusable development process.

50 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

: 'ha__livtt‘l' : 'S‘énipl'é Technigues Deliverable
3 Identifying Business Value System Request System Request
Analyze Feasibility Technical Feasibility, Economic Feasibility, Feasibility Study
Organizational Feasibility
4 Develop Workplan Task Identification Workplan
Time Estimation
Staff the Project Creating a Staffing Plan Staffing Plan
Creating a Project Charter Project Charter
Control and Direct Project - Refine Estimates GANTT Chart
Track Tasks PERT/CPM
Coordinate Project CASE Tool
Manage Scope Standards List
Mitigate Risk Risk Assessment
5 Requirements Determination Improvement Identification Techniques Information
Interviews
JAD
Questionnaires
6 Functional Modeling Activity Diagram Functional Model
Use Cases Use Case Points
Use Case Diagram
Use Case Point Estimation
7 Structural Modeling CRC Cards Structural Models
Class Diagram
Object Diagram
8 Behavioral Modeling Sequence Diagram Dynamic Models
Communication Diagram
Behavioral State Machine
9 Moving on to Design Factoring Factored Models
Partitions and Layers Design Strategy
Package Diagrams
Custom Development
Package Development
Outsourcing

FIGURE 2-12 Textbook Overview (Continues)

Unified Modeling Language

The Unified Modeling Language, or UML, is a standard set of diagramming tech-
niques that provide a graphical representation that is rich enough to model any sys-
tems development project from analysis through implementation. Today most
object-oriented systems analysis and design approaches use the UML to depict an
evolving system. The UML uses a set of different diagrams to portray the various
views of the evolving system. The diagrams are grouped into two broad classifica-
tions: structure and behavior. The structure diagrams include class, object, package,
deployment, component, and composite structure diagrams. The behavior diagrams

Class and Method Design

Reuse

Factoring

Design Optimization
Constraints

Method Specification
Activity Diagram

Summary 51

) o

Restructured Models
Class Design
Contracts

Method Design

Data Management Layer Design

Selecting an Object Persistence Format

Mapping Problem Domain Objects to
Object Persistence Formats

Optimizing Object Persistence

Designing Data Access and
Manipulation Classes

Object Persistence
Design

Data Access and
Manipulation Design

Human Computer Interaction
Layer Design

Windows Navigation Diagram
Real Use Cases

Input Design

Output Design

Interface Design

Physical Architecture Layer Design

Hardware Design

System Software Design
Network Design

Physical Architecture
Design.

Infrastructure Design

Post-Implementation Review

Construction Software Testing Test Plan
Documentation
Completed System
Installation Direct Conversion Conversion Plan
Parallel Conversion Training Plan
Phased Conversion
Operations and Support Support Strategy Support Plan

RE 2-12 Textbook Overview (Continued)

include activity, sequence, communication, interaction overview, timing, behavior
state machine, protocol state machine, and use case diagrams.

Object-Oriented Systems Analysis and Design

Object-oriented systems analysis and design (OOSAD) are most associated with a phased
development RAD-based methodology where the time spent in each phase is very short.
OOSAD uses a use-case driven, architecture centric, iterative, and incremental informa-
tion systems development approach. It supports three different views of the evolving sys-
tem: functional, static, and dynamic. OOSAD allows the analyst to decompose complex
problems into smaller, more manageable components using a commonly accepted set of
notations. Also, many people believe that users do not think in terms of data or processes,
but instead think in terms of a collection of collaborating objects. As such, object-oriented
systems analysis and design allows the analyst to interact with the user using objects from
the user’s environment instead of a set of separate processes and data.

52 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

@ [

2-6 OO Systems Analysis and Design Methodology

TURN

Review Figures 2-7, 2-9,

your understanding of the UP, the EUP, and MOOSAD,
suggest a set of steps for an alternative object-oriented

B

2-10, and 2-11. Based on systems development method. Be sure that the steps
will be capable of delivering an executable and main-

tainable system.

KEY TERMS

A-Kind-Of (AKO)

Abstract classes

Activity diagram

Analysis model

Analysis paralysis

Analysis workflow
Architecture centric
Attribute

Behavior

Behavior diagrams

Behavior state machine
Build

Business modeling workflow
Class

Class diagram
Communication diagram
Component diagram
Composite structure diagram

One of the most popular approaches to object-oriented systems analysis and design is
the Unified Process. The Unified Process is a two-dimensional systems development process
described with a set of phases and workflows. The phases consist of the inception, elabora-
tion, construction, and transition phases. The workflows are organized into two subcate-
gories: engineering and supporting. The engineering workflows include business modeling,
requirements, analysis, design, implementation, test, and deployment workflows, while the
supporting workflows comprise the project management, configuration and change man-
agement, and the environment workflows. Depending on which development phase the
evolving system is currently in, the level of activity will vary over the workflows.

A Minimalist Approach to Object-Oriented Systems Analysis
and Design with UML

The Minimalist OOSAD (MOQSAD) approach is based on the processes described in the
Unified Process, the Open Process, the Object-Oriented Software Process, and XP
approaches to object-oriented systems development. It uses a modified phased-delivery
RAD approach to its life cycle. It is also use-case driven, architecture centric, and iterative
and incremental. It supports three different generic views of the evolving system: func-
tional, static, and dynamic. Furthermore, it utilizes timeboxes to manage the creation of
builds of the system. Finally, it uses UML 2.0 as its graphical notation to support the struc-
tural and behavioral modeling of the system.

Concrete classes Infrastructure management workflow

Configuration and change manage-

Implementation workflow

ment workflow - Information hiding
Constraints Inherit
Construction phase Inheritance
Deployment diagram Instance
Deployment workflow Interaction diagram

Design model
Design workflow

Interaction overview diagram
Iterative

Dynamic binding Message

Dynamic view Method

Elaboration phase Object

Encapsulation Object diagram

Engineering workflows Object management group (OMG)
Environment workflow . Object-oriented approach
Functional view Object-oriented methodologies
Inception phase Operations and support workflow
Incremental Package

| the

very
ative
unc-
n of
Tuc-

flow

G)

Exercises 53
Simula Timeboxing
_ Smalltalk Timing diagram
development RAD State Transition phase
State machine Unified Modeling Language (UML)
Static binding Use case
Static view Use case development
Stereotypes Use case diagram
Structure diagrams Use-case driven
‘management workflow Subclass Workflows
state machine Superclass
ements determination Supporting workflows
ements workflow Tagged Values
Test workflow

escribe the major elements and issues with an object-
riented approach to developing information systems.
at is the difference between classes and objects?

at are methods and messages?

y are encapsulation and information hiding
portant characteristics of object-oriented systems?
at is meant by polymorphism when applied to
ect-oriented systems?

mpare and contrast dynamic and static binding.

at is the Unified Modeling Language?

0 is the Object Management Group?

at is the primary purpose of structure diagrams?
what are behavior diagrams used?

at is a use case?

at is meant by use-case driven?

Why is it important for an OOSAD approach to be
rchitecture centric?

What does it mean for an OOSAD approach to be
cremental and iterative?

What are the phases and workflows of the Unified Process?

Investigate the Unified Modeling Language on the
‘Web. Write a paragraph news brief describing the cur-
‘rent state of the UML. (Hint: A good Web site to begin
with is www.uml.org.)

JInvestigate Rational’s Unified Process (RUP) on the
Web. RUP is a commercial version that extends
aspects of the Unified Process. Write a brief memo
describing how it is related to the Unified Process as
described in this chapter. (Hint: A good Web site to
begin with is www.rational.com.) ’

16. Compare the phases of the Unified Process with the
phases of the waterfall model described in Chapter 1.

17. What are the benefits of an object-oriented approach
to systems analysis and design?

18. Compare and contrast the typical phased delivery
RAD SDLC with the modified-phased delivery RAD
SDLC associated with the OOSAD approach
described in this chapter.

19. What are the steps or phases of the minimalist
OOSAD approach described in this chapter?

20. What are the different views supported by the mini-
malist OOSAD approach described in this chapter?

21. What diagrams and models support the different
views identified in the previous question?

22. What is a build?

23, What is a pattern?

24. How do the Unified Process’s phases and workflows
map into the steps of the minimalist OOSAD
approach described in this chapter?

C. Investigate the Object Management Group (OMG) on
the Web. Write a report describing the purpose of the
OMG and what it is involved with, besides the UML.
(Hint: A good Web site to begin with is www.omg.org.)

D. Using the Web, find a set of CASE tools that support the

UML. A couple of examples include Rational Rose and

Poseidon. Find at least two additional ones. Write a short

report describing how well they support the UML, and

make a recommendation as to which one you believe
would be best for a project team to use in developing an

54 Chapter 2 Introduction to Object-Oriented Systems Analysis and Design

object-orientéd information system using the UML.

E. Suppose you are a project manager that typically has
been using a waterfall development-based methodol-
ogy on a large and complex project. Your manager has
just read the latest article in Computerworld that
advocates replacing this methodology with the Uni-
fied Process and comes to your office requesting you
to switch. What do you say?

E. Suppose you were an analyst working for a small com-
pany to develop an accounting system. Would you use
the Unified Process to develop the system, or would

MINICASES

1. Joe Brown, the president of Roanoke Manufacturing,
requested that Jack Jones, the MIS department man-
ager, to investigate the viability of selling their prod-
ucts over the Web. Currently, the MIS department is
still using an IBM mainframe as their primary
deployment environment. As a first step, Jack con-
tacted his friends at IBM to see if they had any sug-
gestions as to how Roanoke Manufacturing could
move toward supporting sales in an electronic com-
merce environment while keeping their mainframe as
their main system. His friends explained that IBM
(www.ibm.com) now supports Java and Lynix on
their mainframes. Furthermore, Jack learned that
IBM owns Rational (www.rational.com), the creator
of the UML and the Unified Precess. As such, they
suggested that Jack investigate using object-oriented
systems as a basis for developing the new system.
They also suggested that using the Rational Unified
Process (RUP), Java, and virtual Lynix machines on
his current mainframe as a way to support the move-
ment toward a distributed electronic commerce sys-
tem would protect his current investment in his
legacy systems while allowing the new system to be
developed in a more modern manner.

Even though Jack’s IBM friends were very persuasive,
Jack is still a little wary about moving his operation
from a structured systems approach to this new object-
oriented approach. Assuming that you are one of Jack’s
IBM friends, how would you convince him to move

G

2

you prefer one of the traditional approaches described
in Chapter 12 Why?

Suppose you were an analyst developing a new infor-
mation system to automate the sales transactions
and manage inventory for each retail store in a large
chain. The system would be installed at each store
and exchange data with a mainframe computer at the
company’s head office. Would you use the Unified
Process to develop the system or would you prefer
one of the traditional approaches described in Chap-
ter 1? Why?

toward using an object-oriented systems development
method, such as RUP, and using Java and Lynix as a
basis for developing and deploying the new system on
Roanoke Manufacturing’s current mainframe.
While recently attending a software development
conference, Susan Brown, a systems analyst at
Staunton Consulting, was exposed to object-oriented
approaches to developing software. Based on what
she learned, she feels that object-oriented approaches
are a must for her firm to survive in the consulting
business in the future. the advantages of using object-
oriented approaches seem to vastly out weigh the
benefits of remaining with the software development
methods used by Staunton Consulting. However,
even though she has 15 years of software develop-
ment experience, she feels somewhat overwhelmed
with the complexity of using UML 2.0, with its 14
diagrams, and the Enhanced Unified Process.
Assuming that you are a close friend that has been
using your own firm’s UML 1.3 based object-oriented
systems development method for the past 5 years, how
would you help Susan overcome her concern with the
complexity of UML 2.0 and the Enhanced Unified
Process? Furthermore, it would be helpful if you
helped her create a short checklist of characteristics of
software development projects that she could use to
base her recommendation for her firm to switch to an
object-oriented systems development approach that
used UML 2.0.

