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The Wheel is a sequential game of perfect information played twice during each taping of
the television game show The Price is Right. This game has simple rules and the stakes are
high. We derive the unique subgame perfect Nash equilibrium (USPNE) for The Wheel
and test its predictive ability using data from both the television show and laboratory plays
of this game. We ®nd that contestants frequently deviate from the USPNE when the
decisions are dif®cult. The pattern of these deviations is (a) largely independent of the
stakes of the game, and (b) consistent with a psychological bias of the omission-
commission type.

In this paper we use information from a natural experiment originating in
the television game show The Price is Right to analyse equilibrium behaviour in
a sequential game under varying degrees of complexity and changing stakes.
The Wheel segment in this show presents participants with a sequential game
of perfect information with simple rules and expected payoffs in the order of
several thousand dollars. In this game, played twice on each showing of The
Price is Right, three contestants accumulate points by sequentially spinning a
wheel with twenty uniform partitions labelled from 5 to 100.1 Points awarded
to a contestant depend on where the wheel stops. In a predetermined order,
each contestant has the opportunity to spin the wheel twice, and her score
equals the sum of her ®rst and second (if taken) spins. The contestant whose
score is closest to 100 without going over wins the game and the right to
compete against another contestant in a game called the Showcase Showdown,
where prizes are worth thousands of dollars. In addition, any contestant
scoring exactly 100 points wins a bonus of $1,000 and a chance of winning an
extra bonus of either $5,000 (with 10% probability) or $10,000 (with 5%
probability).

A contestant's basic strategy in The Wheel consists of whether or not to use
her second spin. Consider the ®rst contestant. After her ®rst spin, she must
decide whether to spin again or be satis®ed with her score. Spinning again
increases both the contestant's point total and her likelihood of receiving
bonus payments. However, the second spin also creates the risk of exceeding

* The authors thank Patty Battalio and Elizabeth Milbourn for help in data collection, and Paul
Healy for writing the laboratory experiment program. We also thank three anonymous referees,
Jeff Bacidore, Ronald Balvers, Raymond Battalio, Robert Battalio, Gabriella Bucci, Rachel Croson,
George Deltas, Charles Holt, Dan Levin, Todd Milbourn, Charles Plott, Andy Schotter, Randolph
Sloof, and various workshop and conference participants for useful comments. Any errors are the
responsibility of the authors.

1 On The Price is Right, the points awarded to contestants on The Wheel range from $0.05 to $1.00.
For clarity in exposition, we multiply each point total by $100.
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100 points and immediately losing the game. The main strategic question we
address is: when should contestants use their second spin? In addition,
because the contestant's second spin decision is contingent on her ®rst spin,
the score she obtained on the ®rst spin crucially affects the degree of
dif®culty of that decision. More precisely, ®rst spin scores that are relatively
close to 5 or 100 lead to straightforward or `easy' decisions, while ®rst spin
scores in the vicinity of 50 or 60 create more `dif®cult' second spin decisions.

We derive and fully characterise the unique subgame perfect Nash
equilibrium (USPNE) to The Wheel and show that bonus payments affect
players' strategies in a meaningful way.2 We then use data from a sample of
282 plays of The Wheel from the television programme to evaluate our analytical
predictions empirically. Our results show that a signi®cant percentage of
contestants playing The Wheel make decisions that deviate from USPNE.
Furthermore, these deviations (a) occur consistently in the cases in which the
second spin decision is dif®cult, and (b) show a clear bias for failing to spin
again when it is optimal to do so, as opposed to spinning again when it is
not optimal to do so. Whereas (a) can be attributed to complexity
considerations, we relate (b) to psychological biases of the omission/
commission type or `sudden death aversion'.3

A question frequently asked in the empirical and experimental literature on
games and decision-making is whether the size of the payoffs is an important
determinant of subject behaviour. In particular, if discovering an optimal
action is costly in some sense (eg, computational complexity, effort), do
subjects have the incentive to bear these costs when rewards are relatively
small? And, if there is a marginal reward/marginal effort cost tradeoff
operating in the background, would we then expect more accurate play as
rewards become larger?4

To evaluate the impact of payoff stake size and to gain additional insight
into behaviour in this game, we conducted a laboratory experiment reprodu-
cing the basic conditions present in The Wheel. This experiment nicely
complements our analytical and empirical ®ndings from the television game
for a number of reasons. First, it allows us to generate additional observations,
especially on the dif®cult cases, to analyse the robustness of our ®ndings
based on the game show data. Second, because the laboratory environment is
devoid of the `excitement' inherent in the game show atmosphere, it allows
us to explore the extent to which this excitement factor matters. Third, in the
experiment subjects play a sequence of games against anonymous, randomly
changing opponents, which allows us to determine whether choices improve

2 After the ®rst draft of this paper was completed, we became aware of an August 16, 1993 USA Today
newspaper article in which Steve Goodman, then a 19-year old junior math major at the University of
Dayton, described the optimal strategy for playing The Wheel when there are no bonus payments.

3 See, for example, Kahneman and Tversky (1982), Spranca et al. (1991), and Thaler (2000).
4 Smith and Walker (1993) document two main bene®ts associated with increasing payoff size in

experimental settings: (a) a shift of the central tendency of the data toward predictions of rational
models, and (b) a reduction of the variance of the data around predicted outcomes. See also
Kachelmeir and Shehata (1992), and Camerer and Thaler (1995).
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with experience. By contrast, contestants on the television game show only
play The Wheel once. Finally, the payoff scale in the experiment is several
orders of magnitude below the payoffs in the game show. As such we should
be able to ascertain whether stakes have an important impact on player
behaviour.

In spite of the differences between the laboratory experiment and the game
show, surprisingly, the empirical results are remarkably similar. The rates of
incorrect spin decisions are comparable in the two venues, and the deviations
from the optimal strategy exhibit the same bias. This provides additional
support for the psychological bias explanation of the results rather than a
more conventional explanation such as risk aversion. We also observe only
very modest improvement over time in the decisions in the lab.

Although The Wheel is an arti®cial game constructed for entertainment, it
should interest economists who study human decision-making because it
resembles sequential decision problems arising in important economic
contexts. More precisely, Wheel players must decide whether or not to spin
again, just as job (or low purchase price) searchers must decide whether or
not to search again, and ®rm managers must decide whether or not to
continue pursuing investment projects following the receipt of new informa-
tion. The experimental literature on search has generally found that subjects
search relatively well (their stopping rules seem to be close to the optimum),
but that there is a tendency to search too little (Cox and Oaxaca, 1992;
Sonnemans, 1998). Stopping too soon in the search context is similar to our
observation that Wheel players often times fail to spin again when it is optimal
to do so. While some have argued that early termination of search can be
attributed to risk aversion, Sonnemans (1998) argues that sub-optimal search
strategies cannot be attributed solely to this factor. As evidence he notes that
subjects adopt strategies that are dominated by others Ð in the sense that
they have higher mean earnings but equal earnings variance. Likewise, we
argue in this paper that deviations from optimal play of The Wheel cannot be
due only to risk aversion.

We are not the ®rst to use data from television game shows to investigate
human decision-making. Gertner (1993) uses data from the bonus round of
Card Sharks and ®nds that contestant behaviour follows risk averse patterns.
However he also uncovers several instances in which decisions are inconsistent
with expected utility maximisation. Metrick (1995) analyses wagers in Final
Jeopardy (also see Taylor, 1994). Unlike Gertner, Metrick ®nds that contestants
generally display risk neutral tendencies. Metrick also ®nds that contestants
are more likely to use their `empirical best responses' when their strategic
problems are simpler.5 Due to the subjective nature of the uncertainty in the
game that Metrick analyses, it is dif®cult to establish whether contestants'
decisions are consistent with rationality. Bennett and Hickman (1993) conduct

5 Metrick de®nes an empirical best response as the contestant's best response to the observed
empirical frequency of strategies played by their opponents in a sample of similar games.
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an ex post analysis of the bids made by the fourth and ®nal bidder in The Price
is Right auctions and ®nd that many contestants used bidding strategies that
did not maximise their probability of winning. In a related study, Berk et al.
(1996) ®nd that fourth bidders often use sub-optimal strategies, and that
simple rules of thumb explain observed bidding patterns better than rational
decision theory. Healy and Noussair (2000) report a controlled experiment to
study The Price is Right auctions and ®nd laboratory behaviour that closely
resembles behaviour on the television game show, at least on early trials. We
discuss the relationship between The Price is Right auction results and our
®ndings later in the paper.

Our study makes several contributions to the game show-based literature.
First, in addition to examining decision-making by individual contestants, we
are the ®rst to analyse and test equilibrium behaviour in a well-de®ned game
with only limited strategic uncertainty. Second, because the rules of The Wheel
are straightforward and all contestants should have the same priors about the
distribution of uncertainty, our analysis is likely to provide sharper insights
into the predictions of rational models.6 Finally, our integrated use of both
empirical and experimental data allows us to analyse the robustness of player
behaviour under various conditions surrounding payoffs and the game
environment.

1. The Show and The Wheel

The Price is Right is a one-hour television game show that airs ®ve days a week.
While contestants are chosen from the audience based on a brief interview
conducted as they enter the studio, they are not informed of their selection
until the show's announcer calls their names. Four people are initially
selected to come to the front of the stage known as `contestant's row'. An
auction is then held in which each contestant bids on a prize. The contestant
whose bid is the closest to the suggested retail value of that prize without
overbidding wins both the prize and the right to play a pricing game. After
the pricing game ends, the process repeats itself with a new individual being
invited to contestant's row.

During each Price is Right show six auctions and six pricing games are played.
The Wheel is played twice, once after the third pricing game and again after the
sixth. The three auction winners take turns spinning a wheel divided into 20
equal partitions numbered non-sequentially and ranging from 5 to 100.
Contestants spin in ascending order of their total winnings before The Wheel,
and each is given the option of spinning the wheel twice. With each spin of the
wheel a contestant accumulates a point total which depends on where the wheel
stops. The second (third) contestant does not spin until the ®rst (second)

6 In addition, the expected payoffs associated with winning The Wheel are higher than the expected
payoffs associated with winning other games studied before. Comparisons with previous studies reveal
the stakes in The Wheel are roughly three times those in The Price is Right auctions, four times those in the
Card Sharks bonus round, and 30% higher than the stakes in Final Jeopardy.
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contestant has exhausted her options. The contestant whose point total is closest
to but not more than 100 wins The Wheel and an opportunity to compete in the
Showcase Showdown. Moreover, any contestant who amasses a point total of 100
during The Wheel wins $1,000 and the right to play a game offering a 10%
chance of winning $5,000 and a 5% chance of winning $10,000. If there is only
one contestant with the point total closest to 100 without exceeding it, the game
ends after the third contestant ®nishes her turn. If there is a tie each contestant
in the tie spins the wheel once. This tie-breaking procedure is repeated until a
winner emerges. In the Showcase Showdown, the winner from each of the two
segments of The Wheel bids on her own showcase, which contains prizes such as
trips, automobiles, etc. The contestant whose bid is closest to the suggested
retail price of her showcase without going over wins the game and keeps her
showcase. If both Showcase Showdown contestants overbid neither of them wins
anything. If the winner's bid is within $100 of the actual value she wins both
showcases.

2. A Game Theoretic Model of The Wheel

2.1. General Setup

We assume that each contestant in The Wheel (a) understands the rules of the
game, (b) is capable of evaluating all of her options, and (c) is risk neutral.7 Let ai
and bi represent the number of points received by Contestant i (i � 1, 2, 3) on
her ®rst and second spin, with bi � 0 if no second spin is taken.8 Contestants are
not awarded any points unless the wheel completes a full rotation. This together
with the non-systematic point ordering on the wheel should preclude manipu-
lative behaviour.9 Thus we assume the wheel is unbiased: ai, bi ~ iid Discrete
Uniform {5,10,¼,100}. We let ti � ai + bi represent the total number of points
accumulated by Contestant i and de®ne xi to be the point total that Contestant i
must acquire to have a chance of winning The Wheel. Namely,

x1 � 0;

x2 � t1Ift1�100g;

and

x3 � Maxft1Ift1�100g; t2Ift2�100gg;
where Ifti�100g is equal to 1 if ti £ 100 and zero otherwise.

7 The risk neutrality assumption is innocuous when no bonus payments are made if contestants are
expected utility maximisers. This is because all of the decisions contestants make either increase or
decrease their probability of winning a ®xed prize. Risk aversion potentially affects decisions only when
bonus payments are introduced (see Section 2.3).

8 We refer to the contestant who spins ®rst as Contestant 1, the contestant who spins second as
Contestant 2, and the contestant who spins third (and last) as Contestant 3.

9 It is uncertain whether contestants actually believe they can manipulate the wheel, but we think
such beliefs are unlikely for two reasons. First, we later show that our sample of 846 initial wheel spins
(Table 2) yields an empirical distribution that is uniform. Second, if subjects (strongly) believed they
could manipulate the wheel, such beliefs should lead to overspinning, rather than the underspinning
relative to the equilibrium that we observe.
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For simplicity we also assume that when a contestant is indifferent between
using her second spin and going to a tie-breaking spin-off she uses her spin.
Finally, let Ei(S) represent the expected payoff from playing in the Showcase
Showdown, and assume that Ei(S) � E(S) > 0 for all i.10 For our equili-
brium analysis with bonus payments we assume risk neutrality and that E(S) �
$18,109, the average value paid-out in the 141 Showcase Showdowns in our
sample. Equilibrium is given by the optimal stopping rule for each contestant:
if zi* is the minimum value for which Contestant i will not spin again, the
triplet (z1*, z2*, z3*) de®nes the equilibrium.

2.2. Equilibrium without Bonus Payments11

We ®rst characterise Contestant 3's strategy. After Contestant 3 (C3) takes her
®rst spin either a3 > x3 , a3 < x3, or a3 � x3. If a3 < x3, C3 must spin again to have
a positive probability of winning. On the other hand, she will always forgo her
second spin if a3 > x3. If a3 � x3, C3's second spin decision depends both on the
number of contestants tying her score and on the score itself. If there is a two-way
tie, C3 will use her second spin if a3 � x3 £ 50 because this gives her a better
than 50% chance of winning. Along the same lines, in the case of a three-way tie
C3 will spin again only if a3 � x3 £ 65.

Given C3's strategy, we now focus on Contestant 2 (C2). After C2's ®rst
spin, either a2 < x2 or a2 ³ x2 If a2 < x2, C2 must spin again. On the other
hand, if a2 � x2, C2 will not spin again if a2 > 65, a score that is high
enough to give her a good chance of beating C3 but too high to risk self-
elimination by trying to break the tie with C1. Finally, if a2 > x2, C2 does not
necessarily relinquish her second spin since she wants to give herself the best
chance of beating C3 while keeping her probability of self-elimination low.
We ®nd, using numerical methods, that when, a2 > x2, C2 maximises her
probability of winning The Wheel by relinquishing her second spin when a2 >
55.12 That is, z2* � 55.

10 This is consistent with our risk neutrality assumption. For notational simplicity, we also assume that
Ei(S) � E(S) for all i when there are no bonus payments. With bonus payments, we show that there
exists a non-empty set where Ei(S) must belong for all i in order for our results to hold. We then show
that this assumption is not crucial.

11 The solution we describe in this section is an exact solution to this game based on numerical
methods. It is not an approximation. We present an analytical solution to a continuous version of The
Wheel in Appendix A. The presence of ties, bonuses, and discrete partitions, make a complete analytical
solution to the actual Wheel game extremely dif®cult to calculate. As mentioned in footnote 2,
an undergraduate student at the University of Dayton named Steve Goodman derived the solution to
this game independently from us. His solution is for the game without bonus payments. Although
Mr. Goodman's solution is identical to ours, we do not know what methodology he used to derive it.

12 The numerical computation proceeds as follows. There are twenty possible point totals attainable
with each spin of the wheel, and during normal play there are at most six spins. Hence, there are sixty-
four million (206) equally likely permutations of the points generated by the sequence of six spins of the
wheel. For instance, the probability (payoff) that C2 wins (expects from winning) The Wheel when she
sets z2 � 50, Contestant 1 sets z1 � 50, and C3 plays optimally is calculated by determining the
percentage of the total permutations C2 wins under these circumstances. Payoffs are evaluated for every
possible strategy combination in order to identify the equilibrium strategies. All computer programs are
available from the authors. Details of the computer program logic are in Appendix B.
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We now characterise Contestant 1's (C1's) strategy. Since C1 spins the
wheel ®rst, her minimum score to win is x1 = 0. As with C2, this does not
necessarily imply that C1 forfeits her second spin. Our numerical program
shows that given the other players' strategies z2* and z3*, C1 maximises her
probability of winning by relinquishing her second spin if a1 > 70. This
implies z1* � 70, which leads to:

PROPOSITION 1. When no bonus payments are made, there exists a unique subgame
perfect Nash equilibrium (USPNENB) to The Wheel given by the following strategy pro®le:

Contestant 1 spins again if she gets 65 or fewer points on her ®rst spin.
Contestant 2 spins again if she gets 50 or fewer points on her ®rst spin, if she gets 65 or

fewer points on her ®rst spin and her score equals Contestant 1's score, or if failing to

utilise her second spin guarantees losing.
Contestant 3 spins again if she gets 50 or fewer points on her ®rst spin and ties one other

contestant, if she gets 65 or fewer points on her ®rst spin and ties the two contestants, or if

failing to utilise the second spin guarantees losing.
In USPNENB Contestant 1 wins 30.82% of the time, Contestant 2 wins 32.96% of the

time, and Contestant 3 wins 36.22% of the time.

Because contestants are just concerned with maximising their probability of
winning and playing in the Showcase Showdown, USPNENB is independent of
the expected payoff associated with winning The Wheel. Additionally, the
speci®c values of zi* re¯ect the fact that the wheel's partitions are discrete.
See Appendix A for an algebraic solution to The Wheel in the continuous
no-bonus case.

2.3. Equilibrium with Bonus Payments

We now introduce bonus payments in the game so that it mirrors The Wheel
as played on The Price is Right. Any contestant who amasses a score of 100
during her regular turn or spins a 100 in a spin-off receives $1,000 and one
bonus spin. If that contestant spins 100 in her bonus spin she wins $10,000,
and if she spins either 5 or 15 (the two values on either side of 100), she
wins $5,000. Any contestant can win the $1,000 bonus and the bonus spin
only once. Intuitively, introducing bonus payments may increase a contestant's
incentive to use her second spin. This is because amassing 100 points not
only guarantees participation in the Showcase Showdown, but also has value in
itself. Thus bonus payments potentially make the down side of using the
second spin less onerous than in the no-bonus case.

To understand the impact of bonus payments, consider ®rst C3's problem.
If bonus payments are large relative to E(S), her use of the second spin will
be motivated both by the prospect of playing the Showcase Showdown as well as
getting the bonuses. On the other hand if bonus payments are small relative
to E(S), her decision about using her second spin is solely driven by the goal
of getting to the Showcase Showdown, just as in the no-bonus case. As a result
since expected bonus payments are ®xed, there must be a lower bound on
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E(S), denoted E(S), above which C3 will switch from a decision rule partially
motivated by bonus payments to a rule exclusively based on maximising the
probability of participating in the Showcase Showdown.13

We derive the lower bound E(S) by considering the case where C3 is most
likely to spin again after having won The Wheel (a3 � 5, t1 > 1, and t2 > 1). If
C3 spins again she has a 5% chance of winning $1,000 and a bonus spin
worth an additional $1,000 in expected value. On the down side, there is a
5% chance that she will exceed 100 points and go to a three-way spin-off with
C1 and C2. Thus E(S) must be such that:

E�payoff forfeiting 2nd spinja3 � 5 > x3� � E[payoff using 2nd spinja3 � 5 > x3�:

We ®nd that E(S) � $6,315.79 ensures this condition holds.14 For the
remainder of the paper we assume this lower bound for E(S). The value of
the prizes routinely awarded in the Showcase Showdown are nearly triple this
level on average (see Table 1) and Showcase Showdown players have roughly a
one-half chance of winning the Showdown, so this assumption has no bearing
on the interpretation of our results.

Given E(S) > E(S), C2 will base her strategy on the conjecture that C3 will
follow the same subgame perfect strategy as in the no-bonus case. This does
not imply that bonus payments do not impact C2's decision, because if these
payments are suf®ciently large relative to E(S), C2 could become more
aggressive with respect to using her second spin. In fact only if E(S) is
suf®ciently large relative to bonus payments will C2's optimal strategy be the
same as in the no-bonus case. We ®nd that an upper bound on E(S),
denoted E� �S�, exists beyond which E(S) is so large that C2's optimal strategy
is unaffected by bonus payments. This upper bound is E� �S� � $27,104.
Consequently, unlike in the no-bonus case, we ®nd that given C3's strategy
and E(S) 2 [E(S), E� �S��, C2 maximises her expected payoff by not using her
second spin if a2 > 60; ie, ẑ2 � 60. That is, the bonus payments marginally
increase C2's spin threshold.

Finally, our calculations show that given the strategies of C3 and C2 and the
assumed bounds on E(S), C1 maximises her expected payoff by not using her second
spin if a1 > 70. This is, ẑ1 � 70. Note that because of the discrete distribution of
points, unlike ẑ2, ẑ1 is unaffected by bonus payments. This leads to:

13 Contestants' decisions may potentially be in¯uenced by risk aversion in this case. Take for
instance C3, and assume she amasses enough points to win The Wheel (ie, a3 > x3). At this point the
spin/no spin decision turns into a choice between playing the Showcase Showdown for sure and a
gamble where she plays the Showcase Showdown and gets the bonus with probability q < 1, and gets zero
with probability (1 ) q). Given the relative magnitudes of the expected payoffs associated with the
contestants' decisions, our risk neutrality assumption does not appear onerous. Kachelmeir and
Shehata (1992) and Metrick (1995) show that individuals tend to display risk neutral preferences when
potential payoffs are large and the probability of attaining those payoffs is reasonably high, as is the
case in The Wheel.

14 By certainty equivalence, if C3 was risk averse, E(S) would be lower. As a result, bonus payments
would become even less important in in¯uencing C3's decisions.

2002] 177T H E P R I C E I S R I G H T ` W H E E L ' G A M E

Ó Royal Economic Society 2002



PROPOSITION 2. When bonus payments are made and E(S) 2 [E(S ), E� �S��, the unique
subgame perfect Nash Equilibrium to The Wheel (USPNEB) is identical to USPNENB with
one exception:

Contestant 2 spins again if she gets 55 or fewer points on her ®rst spin, if she gets 65 or

fewer points on her ®rst spin and her score equals Contestant 1's score, or if failing to

utilise her second spin guarantees losing.

In USPNEB Contestant 1 wins 30.86% of the time, Contestant 2 wins 32.95% of the
time and Contestant 3 wins 36.19% of the time.
Comparing Propositions 1 and 2, we see that when E(S) 2 [E(S), E� �S��,
introducing bonus payments changes the equilibrium strategy pro®le and slightly
improves C1's probability of winning. This is because bonus payments make C2
more aggressive in using her second spin. Thus C2 trades-off a higher probability

Table 1

Descriptive Statistics*
Panel A: Contestant winning percentages on The Wheel

Contestant Winning percentage

1 30.14
2 34.04
3 35.82

Panel B: Dollar value of prizes won by winner of the Showcase Showdown

Average $18,109
Standard Deviation $8,761
Minimum $0 

Median $18,150
Maximum $50,682

Panel C: Bonus payments made to contestants in The Wheel

Payment Frequency of payment

$1,000 56
$5,000 6

$10,000 7

Panel D: Dollar Prizes Won by Contestants Prior to The Wheel

Auction Pricing game Auction and pricing game

Contestant Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

1 1,000 417 521 1,276 1,521 1,371
2 1,154 417 2,700 2,794 3,854 2,763
3 1,116 419 9,572 8,200 10,687 8,169

Notes: * The sample period is from June 1994±March 1995, during which time 141 different broadcasts
of The Price is Right were recorded. Since The Wheel is played twice per broadcast, our sample consists of
282 observations of The Wheel.
  No one won the Showcase Showdown 8.5% of the time.
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of winning the bonus for a higher frequency of self-elimination, with C1 being the
primary bene®ciary of the latter effect.15 While C1 wins slightly more often at the
expense of C2 and C3, it is not surprising that the expected payoffs of all three
contestants are higher when bonus payments are introduced. Note also that our
assumption that Ei(S) � E(S) for all i, is not crucial for the results. All we need
for the equilibrium described in Proposition 2 is that E(S) 2 [E(S), E��S��. Finally,
if E(S) > E� �S� then USPNEB is identical to USPNENB, whereas if E(S) ® 0,
ẑi ® 100 for all contestants.

3. Empirical Analysis

3.1. Data

Game Show. We obtained our original sample from 141 tapings of The Price is
Right televised on CBS from June 1994 to March 1995.16 Since The Wheel is
played twice on each show, we have 282 observations in our game show
sample. Table 1 contains descriptive statistics. Of the 282 winners of The Wheel,
129 went on to win the Showcase Showdown. Bonus payments of $1,000 were
awarded to 56 of the 846 individuals in the sample. Of these 56 individuals,
six won $5,000 and seven won $10,000 on their bonus spin. Although seven
$10,000 winners is unusually high for 56 bonus spins, the sample size is
insuf®cient for a reliable Pearson Chi-squared test for the overall distribution
of bonus spins shown in Table 1C.

Table 1, Panel D also shows the dollar value breakdown of the cash and
prizes won by Contestants 1, 2 and 3 in the auctions, in the pricing games,
and in total.17 While there is little deviation in the average value of the prizes
won by the contestants in the auction, there are signi®cant differences in the
average value of the prizes won in the pricing games. In these games C1 won
an average of $54, C2 won an average of $2,700, and C3 won an average of
$9,572, in cash and prizes. The large deviation in this dollar value of prizes is
a consequence of the winnings-priority scheme used to classify these
contestants. Because luck plays a key role in the pricing games and because
those games involve completely different skills, it is unlikely that the more
successful pricing game contestants are better at the strategic thinking
required in the Wheel.

Table 2 contains the frequency with which each point total is attained for
the 846 ®rst spins by each contestant during regular play of The Wheel. We are

15 These results are due to the discrete distribution of points awarded to The Wheel contestants. If
points were continuously distributed on [0, 100], the stopping rules of all contestants would
change.

16 The shows in our sample were recorded using a VCR. Some gaps in the sample are due to
preemption by breaking news events, such as the O.J. Simpson trial. Repeated attempts to obtain
information directly from the show's producers were unsuccessful.

17 As mentioned in Section 1, the pricing games are played individually by winners of the auction
game, prior to play of The Wheel later in the television programme. The programme includes dozens of
different pricing games that vary from day to day.
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unable to reject the hypothesis that this sample is drawn from a discrete
uniform distribution.18

Laboratory Experiment. As a way of complementing the television show data set,
we designed and implemented a laboratory experiment reproducing the basic
strategic problem faced by The Wheel contestants. A total of 69 subjects
participated in the experiment, and each subject played The Wheel game
30 times. Four sessions were conducted, with the number of subjects varying
between 12 and 21 per session. Subjects were randomly regrouped each
period for new plays of the game, so they typically faced new opponents each
period. Subjects interacted through a computer network, so no subject knew
when he or she was grouped with any other speci®c subject (ie, identi®cation
numbers were never displayed). This design permits learning but minimises
any potential repeated game effects that could arise, for example, if subjects
played against the same players in each game. The order of play was also
randomly determined each period.

All sessions had rules exactly as in The Price is Right, including the bonus
spins for amassing the point total of exactly 100. Instructions are included in
Appendix C. Payoffs in the laboratory were scaled down from the game show
by a factor of 5,000 to 1. For example, the winner of The Wheel game
earned $1.80, instead of approximately $9,000 (in expected value) from
participating in the Showcase Showdown; and the initial bonus for achieving a

Table 2

Distribution of Points Awarded on the First Spin of The Wheel for All Television
Show Contestants of The Wheel (846 spins)

Points Frequency (%) Points Frequency (%)

5 4.85 55 5.44
10 4.96 60 4.85
15 4.96 65 4.85
20 5.20 70 5.20
25 3.55 75 5.91
30 5.56 80 4.96
35 4.02 85 6.26
40 6.50 90 4.37
45 4.37 95 4.26
50 5.79 100 4.14

Note: The null hypothesis that this distribution is a discrete uniform distribution cannot be rejected
at the 90% signi®cance level (v2

19d:f : � 18.82).

18 The 551 second spins during regular play are not quite uniformly distributed, with spins of 20, 60,
80 and 85 all occurring about 7% (rather than 5%) of the time, and spins of 65 and 70 occurring about
3% of the time. There does not seem to be a pattern to these deviations from uniformity that is
consistent with attempts by players to manipulate the spin outcomes, since some of the more frequent
outcomes are located next to the less frequent outcomes on the non-sequential number ordering of the
wheel. It is possible that the distribution of second spins is not uniform because in this case the wheel
starting point (the ®rst spin of those who did not choose to stop) is not random; instead, it is the result
of an endogenous decision.
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spin total of 100 was $0.20 rather than $1,000. Sessions lasted about one hour
and subjects earned an average of $19.42, with a maximum of $29.50 and a
minimum of $4.00.

In the ®rst two sessions (with 18 and 21 subjects each), as in the game
show, all wheel spins were drawn independently and uniformly from the set
{5, 10,. . ., 95, 100}. In the third session (Session 3 with 12 subjects) the ®rst
wheel spin of each game was drawn independently and uniformly from the
set {55, 60, 65}. All other spins of a game were from the set {5, 10,. . ., 95,
100} as usual. This was, of course, explained in the instructions. This
restricted set of spins at the very beginning of the game does not change any
of the analysis of optimal player strategies, but it does allow us to gather
more data in the `dif®cult' range of opening spin draws.

In the ®nal session (Session 4 with 18 subjects) we removed the ®rst
player, so subjects played a two-person version of The Wheel. The ®rst wheel
spin of each of these two-person games was drawn independently and
uniformly from the set {50, 55, 60}. All other spins of a game were from
the set {5, 10,. . ., 95, 100} as usual. Again, this change in the distribution of
the ®rst spin does not change the analysis of the game, but it generates more
data in the dif®cult spin total range for Contestant `2' (here actually the ®rst player
of this two-person game). These four laboratory sessions provide data on 775 plays
of the game.

3.2. Results

We ®rst analyse the extent to which Contestants 1, 2 and 3 make decisions
consistent with USPNEB. Table 3 shows the instances each contestant took
actions inconsistent with those in Proposition 2. Panel A displays the correct
utilisation rate for the television game show, and the lower panels display this
same information for the laboratory experiment. Panel C is for the laboratory
session with the ®rst spin a1 drawn from {55, 60, 65} and Panel D is for
the laboratory session with two contestants and the ®rst spin a2 drawn from
{50, 55, 60}.

With a few minor exceptions, C3's decisions are fully consistent with
USPNEB. Nearly all of C1's decisions are consistent with USPNEB when
a1 Î {5, . . ., 45, 70, . . ., 100}. When a1 Î {50, 55, 60, 65}, however, several of
C1's decisions deviate from USPNEB. For example, on the game show C1
correctly used her second spin 19 of the 21 times she scored 50 on her ®rst
spin but only 3 of the 14 times she scored 65 on her ®rst spin.19 In the
laboratory experiment the incorrect utilisation rates also generally increase as

19 The percentage of incorrect decisions made by C1 after accumulating 65 points on the ®rst spin is
signi®cantly greater than (a) the percentage of incorrect decisions made by C1 after accumulating 50
points (Fisher's Exact Test p-value < 0.001), and (b) the percentage of incorrect decisions made by C1
after accumulating 55 points (Fisher's Exact Test p-value � 0.017). The percentage of incorrect
decisions made by C1 after accumulating 60 points on the ®rst spin is signi®cantly greater than
the percentage of incorrect decisions made by C1 after accumulating 50 points (Fisher's Exact Test
p-value � 0.019).
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Table 3

The Decisions of Contestants 1 and 2 on The Wheel
Panel A: Game Show

Contestant 1 Contestant 2*

First spin Frequency

Correct
utilisation of
second spin 

Percent
correct Frequency

Correct
utilisation of
second spin

Percent
correct

{5, ¼, 30} 81 81 100 14 14 100
35 13 13 100 4 3 75
40 14 14 100 4 3 75
45 12 12 100 3 3 100
50 21 19 90 4 3 75
55 11 8 73 6 3 50
60 15 8 53 8 6 75
65 14 3 21 7 7 100

{70, ¼, 100} 101 101 100 77 77 100
Total 282 259 127 119

Panel B: Lab Experiment (Sessions 1 and 2; same spin range as the game show)

{5, ¼, 30} 111 111 100 31 31 100

35 28 28 100 8 7 88
40 28 28 100 4 3 75
45 17 16 94 8 7 88
50 16 15 94 1 0 0
55 23 19 83 12 6 50
60 22 11 50 11 5 45
65 15 9 60 5 5 100

{70, ¼, 100} 126 122 97 97 97 100
Total 386 359 177 161

Panel C: Lab Experiment (Session 3, which had ®rst spin drawn from {55, 60, 65})

{5,¼,30} 0 0 11 11 100

35 0 0 5 5 100
40 0 0 3 3 100
45 0 0 2 2 100
50 0 0 3 3 100
55 41 40 98 2 2 100
60 39 30 77 4 4 100
65 40 22 55 3 3 100

{70, ..., 100} 0 0 44 41 93
Total 120 92 77 74

Panel D: Lab Experiment (Session 4, which had 2 contestants and ®rst spin drawn from {50, 55, 60})

50 86 81 94

55 87 51 59
60 96 62 65

Total 269 194

Notes: * We only consider those instances in which Contestant 2 does not have to spin again to have a chance to win.
  We de®ne a decision as correct if it corresponds to the unique subgame perfect Nash equilibrium derived in
Proposition 2. On the Game Show there were 7 instances in which Contestant 3 tied the highest score with her ®rst
spin. All of these ties were two-way ties. In each of these instances, Contestant 3 correctly utilised her second spin.
In the Laboratory Experiment there were 30 instances in which Contestant 3 tied the highest score with her ®rst
spin. All of these ties were two-way ties. In 26 of these 30 instances, Contestant 3 correctly utilised her second spin.
All four violations were when Contestant 3 incorrectly spins againÐthree times when her ®rst spin was 55 and one
time when her ®rst spin was 60.
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the ®rst spin rises when a1 Î {50, 55, 60, 65}. C2 also made several decisions
violating USPNEB in both the game show and in the laboratory experiment.
These errors were most common when a2 ³ x2 and a2 Î {50, 55, 60,}.20

Nevertheless, players clearly do not use a simple, naõÈve average rule such as
`spin again if my ®rst spin is no greater than 50, since the expected value
from a spin is 50'. They also respond to the strategic properties of the game,
since C1 spin rates generally exceed C2 spin rates as predicted by the
equilibrium analysis.21

Table 3 pools all of the choices across participants. Each contestant played the
game once on the game show, so the game show observations are statistically
independent. But in the laboratory experiment subjects played the game
repeatedly, so it is inappropriate to pool multiple choices by the same subject
for statistical tests that require independence across observations. Therefore, for
the following statistical tests we include only one observation per subject. To be
consistent with the experience level of the game show participants, we include
only the ®rst time that each subject faced the particular choice being analysed.22

In what follows we pool the data across all four laboratory sessions, because a
series of Fisher's Exact Tests conducted separately for each ®rst spin never
indicate that the correct spin utilisation rate is different across laboratory sessions
at the 10% signi®cance level.

Table 4 presents a comparison of the game show and laboratory data based
on the ®rst time that the game show and laboratory subjects faced the `dif®cult'
®rst spins. About one-third to one-half of C1's fail to spin a second time when
their ®rst spin is 60 or 65, except for game show contestants who usually fail to
spin when their ®rst spin is 65. The only signi®cant difference between
behaviour on the game show and in the laboratory experiment occurs when C1
obtains 65 on her ®rst spin; for all other Fisher's Exact Test comparisons the p-
values exceed 0.32. The small sample sizes for C2 on the game show cause the
statistical tests to have low power, but both the lab and game show data exhibit
the same pattern. The correct use rate is lowest (about 50%) when C2's ®rst
spin is 55, because C2 often fails to spin again. The correct use rate increases
when C2's ®rst spin is 60, because in this case she should not spin again except
when she is tied with C1's total. That is, in all cases the deviation from optimal

20 Despite the multiple violations of USPNEB the distribution of winning percentages across
contestants in our game show sample is statistically indistinguishable from the analytical distribution in
Proposition 2 (v2 � 0.0153 versus v2

0:25�2� � 2:77�. We must remark however that this result has no
power and is mainly driven by the large number of instances in which the contestants' decisions were
straightforward.

21 For example, according to Proposition 2, C2 should not spin again when her ®rst spin totals 60 and
she is not tied with C1; C1, however, should always spin again when his ®rst spin totals 60. In the
laboratory data, the ®rst time individual players encountered these conditions C1 spun 18 out of 29
times (62%) while C2 spun 11 out of 31 times (35%). These spin rates are signi®cantly different
(Fisher's Exact Test p-value � 0.035).

22 As an anonymous referee notes, although players in the game show only play The Wheel game
once, they may have observed the game and thought about their strategies numerous times. In that
sense, they may be more `experienced' than some of the laboratory players.
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play occurs most frequently from players failing to spin again when doing so
increases the expected payoff.23

3.3. Interpretation

To gain some insight into the pattern of the deviations from optimal play,
in Table 5 we show the expected game show payoffs associated with the

Table 4

Comparison of Correct Utilisation Rates for the Game Show and the Laboratory
Experiment, Including Only the First Time Each Subject Faced Each Particular Choice

First Spin � 50

Contestant 1 Contestant 2

Correct
use

Incorrect
use Total

Correct
use

Incorrect
use Total

Game show 19 2 21 3 1 4
Laboratory
experiment

14 0 14 19 2 21

Fisher's Exact Test p-value � 0.506 Fisher's Exact Test p-value � 0.422
First Spin � 55

Game show 8 3 11 3 3 6
Laboratory
experiment

25 3 28 16 15 31

Fisher's Exact Test p-value � 0.323 Fisher's Exact Test p-value � 1.000
First Spin � 60

Game show 8 7 15 6 2 8
Laboratory
experiment

18 11 29 20 13 33

Fisher's Exact Test p-value � 0.748 Fisher's Exact Test p-value � 0.687
First Spin � 65

Game show 3 11 14 7 0 7
Laboratory
experiment

17 9 26 8 0 8

Fisher's Exact Test p-value � 0.019 Fisher's Exact Test p-value � 1.000

Note: All p-values are based on the (two-tailed) null hypothesis that the correct use rate is equal on the
game show and in the laboratory experiment.

23 Subjects in the laboratory experiment modestly improved their spin decisions after gaining
experience. To document the changes in behaviour over time we compared the correct spin utilisation
rates in the ®rst 10 periods and the last 10 periods for the sessions with opening spins drawn from the
dif®cult range (Sessions 3 and 4). In these sessions subjects had a much greater opportunity to learn
since they repeatedly made spin decisions in the dif®cult range ± an average of 3 to 5 decisions in the
session for each of the dif®cult opening spins. In Session 3, when C1 faced an initial spin of 60 he
correctly utilised his second spin 9 of the 12 times in periods 1±10 (75%), improving to 14 out of 16
times in periods 21±30 (88%). In this same session, when C1 faced an initial spin of 65 he correctly
utilised his second spin 5 of the 12 times in periods 1±10 (42%), improving to 7 out of 11 times in
periods 21-30 (64%). In Session 4, when C2 (who was actually the ®rst player of this two-player game)
faced an initial spin of 55 she did not improve her correct utilisation rate over time (15 out of 24 were
correct in periods 1±10, and 20 out of 32 were correct in periods 21±30, both 62.5%). In Session 4, when
C2 faced an initial spin of 60 she correctly utilised her second spin 16 of the 34 times in periods 1±10
(47%), improving to 22 out of 28 times in periods 21±30 (79%).
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equilibrium and non-equilibrium use of the second spin by C1 and C2 conditional
on the value of their ®rst spins. We derive the expected payoffs for C1 on the
assumption that C2 follows her subgame perfect strategy, and the expected payoffs
for C2 are computed excluding the cases where she must spin again to have a
chance of winning. From this table, we can see that ®rst spins such as 5 or 100 yield
very easy second-spin decisions, in the sense that the expected payoffs from not
following the subgame perfect strategy are minuscule relative to the ones
associated with equilibrium behaviour. On the other hand, as ®rst spins near
their equilibrium stopping values, the problem becomes very dif®cult. For
instance, when C2's ®rst spin yields 55 points, an increment below the critical
value, only $42 separates the expected payoffs from correctly and incorrectly using
the second spin. A similar scenario arises when C1's ®rst spin value equals 65,
where less than $300 separates the correct and incorrect utilisation expected
payoffs. In sum, the players' conditional payoff functions appear to be very ¯at in
the vicinity of the equilibrium critical values, which may at least partly explain the
higher frequency of mistakes in this range of ®rst spins.24

Table 5

Contestant 1 and Contestant 2's Expected Payoffs from Playing The Wheel
Conditional on Correctly Utilising Second Spin ($)*,  

Contestant 1 Contestant 2

First
spin

Expected payoff
if second spin is
properly utilised

Expected payoff
if second spin is

improperly utilised

Expected payoff
if second spin is
properly utilised

Expected payoff
if second spin is

improperly utilised

5 1,981 4 2,056 1,337
10 1,980 13 2,055 1,342
15 1,979 31 2,053 1,350
20 1,976 58 2,049 1,363
25 1,971 97 2,043 1,382
30 1,963 149 2,033 1,411
35 1,952 219 2,019 1,452
40 1,937 311 1,999 1,512
45 1,915 428 1,972 1,595
50 1,887 577 1,936 1,706
55 1,849 759 1,890 1,848
60 1,795 1,075 2,054 1,808
65 1,721 1,482 2,277 1,746
70 1,961 1,623 2,562 1,659
75 2,583 1,494 3,087 1,527
80 3,346 1,326 3,764 1,353
85 4,268 1,113 4,608 1,132
90 5,373 844 5,633 855
95 6,683 510 6,853 513

100 10,200 0 10,264 0
Average 2,966 606 3,160 1,345

Notes: * Each contestant's optimal stopping rule, and associated expected payoffs and parameters are in
italics.
  All expected payoffs include bonus payments.

24 Since the payoffs in the laboratory experiment are 5,000 times smaller than the ones in the game
show, the differences in payoffs are 5000 times smaller. At the extreme, the difference in expected
payoffs for the marginal case of a ®rst spin of 55 for C2 is less than one cent!
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A paradigm that rationalises some of the characteristics of our data is that of
Quantal Response Equilibrium (QRE) formalised by McKelvey and Palfrey (1995,
1996, 1998), based on a form of bounded rationality (eg, Rosenthal, 1989).
According to QRE, players are not always able to evaluate their expected payoff
from following a given course of action perfectly; ie, there is noisy payoff
observability. If the accuracy of a player's evaluation of her expected payoff is
indexed by a precision or `rationality' parameter, her ability to select the best
response actions will depend on how `rational' the player is. We believe the basic
QRE premise ®ts Wheel decisions fairly well, as it is very likely that contestants can
only imperfectly evaluate the expected payoffs associated with any given decision.
More precisely, in those Wheel cases where the expected payoffs from following
and not following the equilibrium strategy are very close (ie, the dif®cult cases),
QRE implies that a contestant would have to be highly rational to choose the
payoff-maximising action. In fact, Tenorio et al. (1999) estimate that precision
parameters necessary to act rationally most of the time (99.9%) are as much as
43 times larger in the dif®cult than in the easy cases.

Although the noisy expected payoff/QRE approach yields interesting insights
into the deviations from equilibrium play, a de®nitive bias remains. The vast
majority of errors both in the game show and lab experiment are of the under-
spinning rather than the over-spinning type. That is, when making errors,
players mostly fail to spin again when it is pro®table to do so, especially when
they face a substantial risk of going over 100 and immediately losing the game.
For example, contestant one should always spin again when her ®rst spin is 60
or 65, but in these cases game show contestants only spin 38% of the time and
laboratory subjects only spin 62% of the time. In contrast, no contestants on
the game show and only a very small number of laboratory subjects spun again
when their initial spin was 70 or larger. This bias in contestant errors toward
incorrectly forfeiting the second spin can be partially explained by the QRE
approach (Table 5) in the case of C2, where at the margin, under-spinning has
a lower expected cost ($42) than over-spinning ($246). Interpreting the under-
spinning bias in this way for C1 is not as straightforward. In C1's case the
relative costs of under and over-spinning are more symmetrically distributed
around the critical ®rst spin value.25

25 Moreover, the QRE approach posits that error rates depend on expected payoffs, and by design the
expected payoffs are 5000 times higher on the television game show than in the laboratory experiment.
Error rates should therefore be substantially lower on the game show. As Table 4 demonstrates,
however, when controlling for experience the error rates are rarely signi®cantly different in the two
venues. An anonymous referee suggests Radner's notion of the Epsilon Equilibrium as a possible
alternative model of bounded rationality (Radner, 1980). According to this model, contestants will not
bother to switch to an alternative strategy if switching to that strategy nets them expected pro®ts of less
than some value epsilon. The roughly equal error rates in the game show and the laboratory experiment
suggests that if such a theory were to describe play of this game, the relevant epsilon would need to be
proportional to the expected payoffs of the game. Error rates also differ sometimes when the expected
payoffs of an error are approximately equal, however, such as for C2's ®rst spin of 50 and 60 (Table 5).
As Panel D of Table 3 indicates, error rates are much higher in Session 4 when C2's ®rst spin is 60.
Consequently, the pattern of deviations from USPNE does not seem entirely consistent with the epsilon
equilibrium.
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We believe that a more plausible explanation of participants' failure to spin in
marginal conditions is the omission bias that is well documented in the
psychology literature. When equally bad outcomes can occur through an
explicit act (commission) or a failure to act (omission), many studies indicate that
subjects tend to prefer the omission. Hypothetical scenarios that document this
bias often involve moral judgements. For example, an actor intends to bring
about some harm to someone else, and in various endings of each scenario the
actor attempts to bring about the harm either through omission or commission
(Spranca et al., 1991). Subjects rate the actor's morality on a scale from 0 (not
immoral at all) to ±100 (as immoral as possible) in each scenario.

This omission bias is also present in non-moral decisions, however, and may
be caused in part by feelings of regret, combined with loss aversion, when the
reference point is the omission (Kahneman and Tversky, 1982). In some
conditions this regret is more salient when people obtain full knowledge of
the outcomes that could arise from alternative decisions (Ritov and Baron,
1995). In The Wheel, players sometimes learn the consequences of their
omissions depending on the spin decisions and outcomes of subsequent
players, but they only learn the consequences of their spin if they actually
select this option.26 Another experiment could test this omission bias
explanation by framing the subjects' action as stopping before the second spin,
where the second spin would be the automatic (default) choice if the subject
took no action. Omission bias in this alternative design would correspond to
overspinning instead of underspinning.

A game similar to The Wheel with real monetary consequences of omissions
and commissions is the casino game of Blackjack. A player must `hit' (ie,
take more cards) before his opponent (the dealer) does, and he wins if he
achieves a higher card total than the dealer not exceeding 21 (or if the
dealer's card total exceeds 21). Just as an optimal but risky play in The Wheel
is for Contestant 1 to spin again when her ®rst spin is 60 or 65, in some
circumstances (eg, when the dealer has 10 showing) an optimal but risky play
for a Blackjack player is to hit when her current card total is 15 or 16.
Keren and Wagenaar (1985) document that Blackjack players exhibit the
same omission bias we observe in The Wheel: players frequently (about 80% of
the time) fail to take a card in these risky circumstances. Keren and
Wagenaar suggest several explanations for this common decision error,
including a desire to pass control of the ultimate win/lose outcome to the
dealer, as well as an incentive to defer the bad news of losing to a later
stage of the game (Thaler, 2000, has termed this last explanation `sudden

26 Landman (1987) replicates and extends the study by Kahneman and Tversky (1982) and
demonstrates that subjects may experience greater joy when a good outcome occurs through an action
rather than inaction. In The Wheel, this would correspond to greater joy when winning by spinning to a
high total rather than from unlucky spins of one's opponents. Although the difference is not signi®cant
in Landman's experiment, the bias toward action for positive outcomes is smaller than the bias for
inaction for negative outcomes. Based on this evidence and other evidence that emotional reactions to
negative outcomes are greater than for positive outcomes, she argues that the bias overall would lead to
more conservative decision-making. This interpretation is consistent with our Wheel data.
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death aversion'). These explanations and regret can all lead to an omission
bias in The Wheel.

A related explanation is that contestants may derive utility from being in
the limelight. When a contestant does not self-eliminate, a camera shows a
close-up of the contestant standing underneath her Wheel score. Thus a
preference for being in the limelight in itself gives the contestant an incentive
not to spin again. In contrast, when a contestant over-spins and eliminates
herself, the contestant walks away and the audience reacts with a loud groan.
Self-consciousness about this scenario may further induce under-spinning. We
tend to regard this as a less likely explanation for the bias, because a similar
pattern prevailed in the lab, where the limelight effect is non-existent.

4. The Price is Right Auctions and The Wheel

Berk et al. (1996), in their study of the auctions conducted six times during
each showing of The Price is Right, conclude that contestants often use
strategies that are `transparently sub-optimal'. They reach this conclusion
based on their analysis of the behaviour of the fourth and ®nal bidder at
each auction. It can be shown that fourth bidders must either `cut-off' (bid
$1 above) a previous bid or bid zero to maximise their probability of winning.
Yet, in about one-half their sample auctions, the fourth bidder does not
follow this strategy. The authors go on to show that bidders (a) appear to use
rules of thumb to make decisions, and (b) seem to use previous bids as
inputs in their bidding strategies. In related work, Bennett and Hickman
(1993) independently derive similar results regarding bidding behaviour in
these auctions, and Healy and Noussair (2000) show that the fourth bidders
are more likely to use this optimal strategy as they gain experience.

Our analysis of The Wheel suggests that contestants make correct decisions in the
cases that could be labelled as transparent, while making frequent mistakes in the
non-transparent cases. This prompts the following question: why do auction
players fail to make the right decision in a transparent problem while Wheel players
do not? A ®rst possible reason is that the transparent cases at The Wheel are
considerably easier than the fourth bidder's problem at an auction. Arguably, the
decision whether to spin or not after attaining a relatively low or high score on the
®rst spin is an order of magnitude easier than ®guring out the cutting-off strategy
in an auction. In addition, the error rates in The Wheel's most dif®cult cases
(Table 3) suggest that this problem may sometimes be harder than the fourth
bidder's problem. A second explanation may lie on contestant selectivity. To be
eligible to play The Wheel, a contestant must have won an auction. Bennett and
Hickman (1993), and Berk et al. (1996) show that contestants that use the optimal
auction strategies stand to increase their winning frequencies substantially
(roughly by 50%) and thus to go on and play The Wheel. As a result the pool of
Wheel contestants may be selected from a population of more skilled players, ie,
players more likely to ®gure out the rational bidding strategy at the auctions.
Unfortunately, we are unable to test this hypothesis empirically because the
available data sets do not contain matching samples of contestants playing both
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games. A third explanation is that players may be reluctant to employ (very
publicly) the cutting-off strategy, since it clearly rules out another person from
winning and could be perceived as `mean spirited'.27 Finally, it is possible that a
fourth bidder may intentionally bid sub-optimally at a given auction to delay her
possible winning until a later auction. This may result from a bidder's anticipation
of playing a pricing game involving a prize of substantially higher than average
value (eg, a car as opposed to a couch) later in the show. Such large prizes appear
once during each three-auction block in every show.28

5. Conclusions

Very seldom a natural experiment arises that allows researchers to examine
the predictions of a theoretical model cleanly. The Wheel, played twice each
airing of The Price is Right, is one of those rare cases. This game is a one-shot,
sequential game of perfect information with simple rules and a prior source
of uncertainty with a known distribution. In addition, the expected payoffs
associated with winning The Wheel are substantial. We derive the unique
subgame perfect Nash equilibrium to The Wheel under the basic assumptions
implied by the game setup. Using a large sample of plays of The Wheel, both
from the actual show and a matching laboratory experiment, we ®nd that the
decisions made by contestants in The Wheel are not always consistent with the
unique equilibrium. Our analysis indicates that the frequency with which
contestants make decisions inconsistent with equilibrium increases as their
problems become more dif®cult. Furthermore, our results show no signi®cant
difference in the pattern of play between the actual show and the laboratory
experiments, which suggests that difference in stakes does not play a major
role in explaining behaviour in this game. Thus our results favour the view
that players' computational ability and decision-making biases are likely to play
a more important role than stakes in empirical/experimental games, and as
such should be more routinely incorporated into theoretical models.

De Paul University
Purdue University
Date of receipt of the ®rst submission: February 1999
Date of receipt of ®nal typescript: February 2001

Appendix A. Algebraic Solution to The Wheel with a Continuous Support
and No Bonus Payments
In what follows we present a solution to a stylised version of The Wheel when no bonus
payments are made. In this version, we keep all of the assumptions outlined in Section
2.1 with the following exception: rather than assuming that

27 Healy and Noussair (2000) provide some evidence that supports this explanation. They conduct
laboratory Price is Right auctions with and without subject anonymity in different treatments, and they
observe more cutting-off in the anonymous treatment.

28 Observe that this would introduce a repeated-game ingredient into the auctions.
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ai, bi ~ iid Discrete Uniform{5, 10, . . ., 100}, we now assume
ai, bi ~ iid Uniform[0, 1]. We concentrate on the two players facing strategically
relevant decisions, C1 and C2.

C2's problem:

Let x be the value of C2's ®rst spin that maximises her probability of winning.
(i) When C2 uses her second spin, her score must not exceed 1 to have a chance

of winning (ie, x + b2 < 1). When C2's score does not exceed 1, two events may take
place: (a) C3 beats her with her ®rst spin (ie, a3 > x + b2), or (b) C3 must spin twice
to have a chance of winning. In the latter case, C2 wins if a3 + b3 > 1, or if
x + b2 > a3 + b3.

Hence, the probability of C2 winning is:

Pr�1 > x � b2 > a3� b3� � Pr�a3� b3 > 1� ÿ Pr�a3 > x � b2�: �1�
Let

A � Pr�1 > x � b2 > a3� b3� � Pr�1ÿ b2 > x > a3� b3� �2�
since the x's that are less than 1 ) b2 must be greater than a3 + b3,

B � Pr�a3� b3 > 1�; and �3�
C � Pr�a3 > x � b2� � Pr�a3ÿ b2 > x�: �4�

Since ai + bi follows a triangular distribution on [0, 2], and ai ) bi follows a triangular
distribution on [)1, )1], for all i, j, we get:

B � 1

2
; and �5�

C � Pr�a3ÿ b2 > x� � �1ÿ x2�
2

: �6�
Hence, the probability of C2 winning is

A � B ÿ C � x2

2
�2ÿ x�: �7�

(ii) When C2 does not use her second spin, two events may take place: (a) C3 beats
her with her ®rst spin (ie, a3 > x), or (b) C3 must spin twice to have a chance of
winning. In the latter case C2 wins if x > a3 + b3 or if a3 + b3 > 1.
The probability of C2 winning is:

Pr�x > a3� b3� � Pr�a3� b3 > 1� ÿ Pr�a3 > x�: �8�
Let

D � Pr�x > a3� b3� �
x2

2
; �9�

E � Pr�a3� b3 > 1� � 1

2
; and �10�

F � Pr�a3 > x� � �1ÿ x�: �11�
Hence, C2 wins with probability

D � E ÿ F � x � �x
2ÿ1�
2

: �12�
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But, in equilibrium, C2 should be indifferent between spinning and not spinning
again. Thus, from (7) and (12), x should satisfy:

x2

2
�2ÿ x� � x � �x

2ÿ1�
2

: �13�

The only real root to this cubic equation is 0.56984.

C1's problem:

Following the logic used to solve C2's problem, the probability of C1 winning if she
uses her second spin is G �H � I � �y4=4��2ÿ y�, where:

G � Pr�y < 1ÿ b1� Pr�y > a2� b2� Pr�y > a3� b3�; �14�
H � Pr�a2� b2 > 1� ÿ Pr�a2ÿ b1 > y�; �15�
I � Pr�a3� b3 > 1� ÿ Pr�a3ÿ b1 > y�; �16�

and y is the value of C1's ®rst spin that maximises her probability of winning.
The probability of C1 winning if she does not use her second spin is

J � K � L � y4

4
� y ÿ 1

2

� �2

; �17�

where:

J � Pr�y < a2� b2�Pr�y > a3� b3�; �18�
K � Pr�a2� b2 > 1� ÿ Pr�a2 > y�; and �19�

L � Pr�a3� b3 > 1� ÿ Pr�a3 > y�: �20�
Once again, in equilibrium, the critical stopping value for C1 should satisfy:

y4

4
�2ÿ y� � y4

4
� y ÿ 1

2

� �2

: �21�

The only root to this equation in the interval [0, 1] is 0.618.

Appendix B. Logic Underlying Numerical Calculation of Equilibrium
In order to determine the equilibrium strategy for each player, we calculated the
expected payoffs to each player for each possible strategy. Given that each player has
two spins (although for a given strategy, they may choose to use only one), there are
206 or 64 million possible realisations of the wheel game (occurring with equal
probability). Therefore, we calculate a player's expected payoff by determining the
payoffs associated with each potential realisation and taking a weighted-average across
realisations. Having estimated these expected payoffs, we are able to calculate the
optimal stopping rule for each player.

More precisely, we can characterise each player's strategy by a set of decision rules
of the type:

Player 1:
`If my ®rst spin is greater than or equal to A, I will not spin again. Otherwise, I will spin

again'.
Player 2's strategy is more complicated since she must also decide what to do in the

case of a tie. Thus, her strategy can be characterised by the following:
`If my ®rst spin is less than the ``score to beat'', I will spin again. If my ®rst spin exceeds the

``score to beat'' and is greater than or equal to B, I will not spin again; otherwise I will spin
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again. If I tie with player 1 on my ®rst spin and this spin is less than C, I will spin again;
otherwise, I will not'.
For player 2, the `score to beat is de®ned as the total of player 1's spin(s) or zero if
this total exceeds 100.

Player 3's strategy is even more detailed than the other two player's strategies
because this player's ®rst spin could result in either a two- or three-way tie. Since ties
require a `spin-off' where each contestant takes one spin and the one with the highest
spin goes on to the Showcase Showdown, player 3 may use a different stopping rule
for a three-way tie than for a two-way tie. Hence, player 3's strategy can be written as

`If my ®rst spin is less than the ``score to beat'', I will spin again. If my ®rst spin exceeds the
`score to beat' and is less than D, I will spin again; otherwise I will not. If I tie with exactly one
of the earlier players on my ®rst spin and this spin is less than E, I will spin again; otherwise I
will not. If I tie with both of the earlier players on my ®rst spin, I will spin again if this spin is
less than F; otherwise, I will not'.

We can de®ne the combination of strategies by the set {A, B, C, D, E, F}. Given that
each element can take on one of 21 different values (ie, values of 0, 5, 10, ..., 100),
there are 216 different strategy combinations. For a given strategy combination, we
calculate the payoff to each player given a realisation of the wheel. A realisation then
takes the form of {z11, z12, z21, z22, z31, z32}, where the ®rst subscript denotes the player
and the second denotes the spin. The strategy set is used to determine the payoffs to
each player for each realisation of the wheel.

For example, one realisation would be {40, 10, 55, 65, 50, 45}. Let's assume that the
strategy set we want to investigate is {70, 60, 50, 50, 60, 65}. The game would unfold as
follows. Player 1's ®rst spin is a 40. Given that the stopping rule tells the player to
spin again if her ®rst spin is less than 70, she would choose to spin again. The second
spin is the second element of the realisation set (10), so player 1's total would be
40 + 10 or 50. Since this is less than 100, the `score to beat' is set at 50. Next, player 2
spins, and the realisation is 55 (ie, the third element of the realisation set). Since the
decision rule is to spin again if the ®rst spin exceeds the score to beat (50) and this
spin is less than 60 (ie, the second element of the strategy set), this player will spin
again. Her second spin is a 65, for a total of 115. Since this exceeds 100, player two is
eliminated and the score of 50 remains the `score to beat'. Next, Player 3 spins, with
the ®rst spin being 50 (ie, the ®fth element of the realisation set), which is exactly
equal to the `score to beat'. Player 3's strategy says to spin again if the ®rst spin results
in a two-way tie and is below 60. Consequently, player 3 spins again, with the second
spin being 45. Since player 3's total (95) is less than 100 and exceeds the previous
`score to beat', player 3 is the winner and receives the expected payoff of going to the
Showcase Showdown. The other two players receive a payoff of zero.

Note that scores of 100 result in the player receiving $1,000 cash. Plus, the player
receives a bonus spin, where she wins $10,000 with probability 0.05 and $5,000 with
probability 0.10. Thus, receiving a score of 100 increases the expected payoff by
$2,000. Consequently, in the game above, had player 3's second spin been 50, her
total score would have been 100. Thus, her payoff would be equal to the expected
value of participating in the Showcase Showdown plus $2,000. Further, if player 3's rule
would have been to stop at 50 in a one-way tie, then these two individuals would have
been involved in a `spin-off', where each individual gets one spin with the one with
the highest spin going on to the Showcase Showdown. Thus, in a two-way tie, each
individual has a 50% chance of going on to the Showcase Showdown, while a three-way
tie results in a 33.33% chance. Such spin-offs and bonuses were taken into account in
calculating the expected payoffs.

To calculate the expected payoff for the strategy given above, we would calculate the
payoff for the remaining possible wheel realisations. The expected payoff for each
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player for a given strategy is calculated as the average of these 64 million possible
payoffs. This is repeated for all the possible strategy sets. What we are left with is the
expected payoff to each player for each strategy set, which allows us to determine the
subgame perfect Nash equilibrium.

It is important to note again that we do not calculate the expected payoffs by
simulating a large number of games and then using those outcomes to calculate some
form of central tendency measure. Instead, we calculate the exact payoffs accrued by
each player in each state, and then take a probability-weighted average across states to
get the actual expected payoff. As such, since our algorithm looks for a decision rule
that leads to a maximum among these expected payoffs, our solution is an exact
solution.

Appendix C. Experiment Instructions

General

This is an experiment in the economics of decision making. The instructions are
simple and if you follow them carefully and make good decisions you will earn money
that will be paid to you in cash at the end of the experiment.

During the experiment you will interact in a sequence of 30 decision `periods' in
groups of three persons. The total number of participants in this experiment today is
Ð. The computer will randomly reassign you into groups of three persons each
period. Everyone has an equal chance of being assigned with any other two
participants. The computer will also randomly determine the order in which the
three players in each group will take turns making decisions. Therefore everyone has
an equal chance at being the ®rst, second, or third player to make a decision within
each group. All of these assignments are totally random and are not affected by any
decisions anyone makes during the experiment. You will never learn the identity of the
persons you are assigned with in any period.

The Wheel

As described in a moment, you will decide each period if you want to make either one
or two `spins' of a `wheel'. These spins are the outcome of a random process that will
actually be determined by a random number generator on the computer. But to
understand the spin process consider the wheel that the experimenter is showing
around the room. This wheel has 20 segments. Each segment is labelled with a
number, from 0.05 to 1.00. Each 5-cent increment is included on the wheel, and all
segments are the same size. Therefore, each spin of the wheel gives you an equal
chance of the outcomes 0.05, 0.10, 0.15,¼, 0.95, 1.00.

Decisions

Your total spin score is the sum of your one or two spins of the wheel. During each
period everyone will make one decision: whether or not to spin the wheel a second
time to increase their total spin score. The objective is simpleÐobtain the highest total
spin score of the group of three persons without going over 1.00. Anyone who has a
total spin score greater than 1.00 automatically loses that period. The winner is the
person with the highest total spin score that is less than or equal to 1.00, and that
winner receives $1.80 in cash. There will be one winner each period in each group of
three.

2002] 193T H E P R I C E I S R I G H T ` W H E E L ' G A M E

Ó Royal Economic Society 2002



Ties

In the event that more than one participant in each group of three persons has the
same, highest spin score without going over 1.00, the computer will conduct a `spin-
off' to determine the winner. In this spin-off, each tied participant gets one spin of
the wheel. The person who spins the highest number wins the $1.80 that period. (If
the spin-off spins are tied as well, additional spin-off rounds are conducted until a
single winner emerges.)

Bonuses

If you obtain a total spin score of 1.00 you instantly win a bonus of $0.20. By
obtaining this total spin score of 1.00, you also get one (and only one) extra free spin
that does not count in your total spin score. If this extra free spin comes up 1.00,
then you win another bonus of $2.00, for a total bonus of $2.00 + 0.20 � $2.20. This is
in addition to the $1.80 that you will probably win for having the highest total spin
score. If this extra free spin comes up either 0.05 or 0.10, then you instead win
another bonus of $1.00, for a total bonus of $1.00 + 0.20 � $1.20. Note that when you
obtain a total spin score of 1.00 you have 1 chance out of 20 to receive the total
bonus of $2.20; you have 2 chances out 20 to receive the total bonus of $1.20; and
you have 17 chances out of 20 to receive the total bonus of $0.20.

Procedures

Everyone makes at least one spin, so the computer automatically displays the outcome
of the ®rst spin before asking you for a decision. You should look at the outcome of
your own ®rst spin, as well as the total spin scores of any participants who have already
made their decisions. You then check off either the Stop Here button or the Spin
Again button, and then click on the larger button marked Continue. Spin outcomes
and total spin scores are displayed to all three members of your group. At the end of
the period you should record any earnings you have for that period, including
bonuses, on your Personal Record Sheet. The winner of each group is noted at the
bottom of your decision frame, and your player number for that period is highlighted
in red. That is how you can quickly determine if you are the winner that period.

Summary

· You will be randomly reassigned each period into groups of three. The decision order is
also random.

· On any wheel spin the numbers 0.05, 0.10,¼, 0.95, 1.00 are equally likely.
· Each participant decides whether to stop at one spin or spin a second time. Only one or

two spins are possible. The total spin score is the sum of the one or two spins.
· The second and third participants do not start spinning until the previous participant(s)

have completed all of their spins.
· The participant who has the highest spin total not exceeding 1.00 wins $1.80. Ties are

broken with a tie-breaking spinoff.
· Anyone who has a total spin score of 1.00 automatically receives a bonus of $0.20 and gets

a free bonus spin. If the bonus spin comes up 1.00 then the person receives an additional
bonus of $2.00. If the bonus spin instead comes up 0.05 or 0.10 then the person receives
an additional bonus of $1.00.

Are there any questions now before we begin the experiment?
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