GSB 420

Homework #2b Calculus Applications: Optimization

- A. Find the value of X that optimizes the following functions. Identify whether X value found is associated with a maximum or a minimum of the primary function, Y. find the value of Y at the optimal value of X
 - 1. $Y = 2X^2 4X + 20$
 - X=1; Minimum; Y=18
 - b. X=1; Maximum; Y=18
 - c. X=2; Minimum; Y=20
 - d. X=2; Maximum; Y=20
 - e. none of the above
 - 2. $Y = -4X^2 + 16X + 1$
 - a. X=1; Minimum; Y=13
 - b. X=1; Maximum; Y=13
 - c. X=2; Minimum; Y=17
 - d. X=2; Maximum; Y=17
 - e. none of the above
 - 3. $Y = -2(X-5)^2$
 - a. X=5; Minimum; Y=0
 - b. X=5; Maximum; Y=0
 - c. X=-5; Minimum; Y=200
 - X=-5; Maximum; Y=200
 - e. none of the above
 - 4. $Y = \frac{1}{3}X^3 \frac{3}{2}X^2 + 2X + 1$
 - a. X=1; Minimum; Y=11/6
 - b. X=1; Maximum; Y=11/6
 - c. X=2; Minimum; Y=11/6
 - d. X=2; Maximum; Y=5/3
 - e. none of the above
 - 5. $Y = \frac{20}{3}X^3 60X^2 + 160X + 10$

- a. X=2; Minimum; Y=143.333
- b. X=2; Maximum; Y=143.333
- X=4; Minimum; Y=116.666
- d. X=4; Maximum; Y=116.666
- e. only (b) and (c) of the above
- B. Find the first and the second partial derivatives of the following multivariate functions with respect to X.

6.
$$Y = 2X^3Z^5$$

a.
$$\frac{\partial Y}{\partial X} = 6X^2 Z^5 \qquad \frac{\partial^2 Y}{\partial X^2} = 12XZ^5$$

b.
$$\frac{\partial Y}{\partial X} = 10X^3Z^4$$
 $\frac{\partial^2 Y}{\partial X^2} = 40X^3Z^3$

c.
$$\frac{\partial Y}{\partial X} = 3X^2 Z^5$$
 $\frac{\partial^2 Y}{\partial X^2} = 6XZ^5$

d.
$$\frac{\partial Y}{\partial X} = 6X^3 Z^5$$
 $\frac{\partial^2 Y}{\partial X^2} = 18X^3 Z^5$

$$7 Y = 10X^a Z^b - 2X + 3Z$$

a.
$$\frac{\partial Y}{\partial X} = 10aX^{a-1}Z^{b-1} - 2 \qquad \qquad \frac{\partial^2 Y}{\partial X^2} = 10a(a-1)X^{a-2}Z^{b-2}$$

b.
$$\frac{\partial Y}{\partial X} = 10bX^aZ^{b-1} + 3 \qquad \frac{\partial^2 Y}{\partial X^2} = 10b(b-1)X^aZ^{b-2}$$

c.
$$\frac{\partial Y}{\partial X} = 10aX^{a-1}Z^b - 2 \qquad \qquad \frac{\partial^2 Y}{\partial X^2} = 10a(a-1)X^{a-2}Z^b$$

d.
$$\frac{\partial Y}{\partial X} = 10aX^aZ^b - 2 \qquad \qquad \frac{\partial^2 Y}{\partial x^2} = 10a(a-1)X^{a-1}Z^b$$

e. none of the above

8.
$$Y = 2X^{-3}Z^2 + 5X^2Z - 4X + 20Z$$

a.
$$\frac{\partial Y}{\partial X} = 6X^{-4}Z^2 + 10XZ - 4$$
 $\frac{\partial^2 Y}{\partial X^2} = -24X^{-5}Z^2 + 10Z$

b.
$$\frac{\partial Y}{\partial X} = 4X^{-3}Z + 5X^2 + 20 \qquad \frac{\partial^2 Y}{\partial X^2} = 4X^{-3}$$

c.
$$\frac{\partial Y}{\partial X} = -6X^{-4}Z^2 + 10XZ - 4$$
 $\frac{\partial^2 Y}{\partial X^2} = 24X^{-5}Z^2 + 10Z$

d.
$$\frac{\partial Y}{\partial X} = -6X^{-2}Z^2 + 10XZ - 4$$
 $\frac{\partial^2 Y}{\partial X^2} = 12X^{-1}Z^2 + 10Z$

9.
$$Y = \frac{X^2}{Z^2} + 3X^5 - 2Z^3 + XZ$$

a.
$$\frac{\partial Y}{\partial X} = \frac{2X}{Z^2} + 15X^6 + Z$$

$$\frac{\partial^2 Y}{\partial X^2} = \frac{2}{Z^2} + 90X^7$$

b.
$$\frac{\partial Y}{\partial X} = \frac{2}{Z^2}X + 15X^4 + Z \qquad \qquad \frac{\partial^2 Y}{\partial X^2} = \frac{2}{Z^2} + 60X^3$$

c.
$$\frac{\partial Y}{\partial X} = \frac{2}{Z^2}X + 15X^4$$

$$\frac{\partial^2 Y}{\partial X^2} = \frac{2}{Z^2} + 60X^3$$

d.
$$\frac{\partial Y}{\partial X} = \frac{X}{2Z^2} + 15X^4 + Z \qquad \qquad \frac{\partial^2 Y}{\partial X^2} = \frac{1}{2Z^2} + 60X^3$$

e. none of the above

10.
$$Y = 5X^{10} + 10Z^3 + 2X^{-2}Z^{-3} + 20X - 10Z + 100$$

a.
$$\frac{\partial Y}{\partial X} = 30Z^2 - 6X^{-2}Z^{-4} - 10$$
 $\frac{\partial^2 Y}{\partial X^2} = 60Z + 24X^{-2}Z^{-5}$

b.
$$\frac{\partial Y}{\partial X} = 50X^9 - 4X^{-3}Z^{-3} + 20$$
 $\frac{\partial^2 Y}{\partial X^2} = 450X^8 + 12X^{-4}Z^{-3}$

c.
$$\frac{\partial Y}{\partial X} = 50X^9 + 10Z^2 + 20 - 10Z$$
 $\frac{\partial^2 Y}{\partial X^2} = 450X^8 + 10Z - 10$

d.
$$\frac{\partial Y}{\partial X} = 50X^9 + 30Z^2 - 4X^{-3}Z^{-3} + 20 - 10$$
$$\frac{\partial^2 Y}{\partial X^2} = 450X^8 + 60Z + 12X^{-4}Z^{-3}$$

- e. only (a) and (b) of the above
- Find the first and the second partial derivatives of the following multivariate functions with respect to Z.

11.
$$Y = 2X^3Z^5$$

a.
$$\frac{\partial Y}{\partial Z} = 10X^3Z^4 \qquad \qquad \frac{\partial^2 Y}{\partial Z^2} = 40X^3Z^3$$

b.
$$\frac{\partial Y}{\partial Z} = 2X^3 Z^4 \qquad \frac{\partial^2 Y}{\partial Z^2} = 8X^3 Z^3$$

c.
$$\frac{\partial Y}{\partial Z} = 4 \cdot 3 \cdot 2X^3 Z^4$$
 $\frac{\partial^2 Y}{\partial Z^2} = 3 \cdot 24X^3 Z^3$

d.
$$\frac{\partial Y}{\partial Z} = 30X^2Z^4$$
 $\frac{\partial^2 Y}{\partial Z^2} = 240X^1Z^3$

12.
$$Y = 10X^aZ^b - 2X + 3Z$$

a.
$$\frac{\partial Y}{\partial Z} = 10abX^{a-1}Z^{b-1} + 3 \qquad \qquad \frac{\partial^2 Y}{\partial Z^2} = 10ab(a-1)(b-1)X^{a-2}Z^{b-2}$$

b.
$$\frac{\partial Y}{\partial Z} = 10bX^aZ^{b-1} - 2X + 3$$
 $\frac{\partial^2 Y}{\partial Z^2} = 10b(b-1)X^aZ^{b-2} - 2X$

c.
$$\frac{\partial Y}{\partial Z} = 3$$
 $\frac{\partial^2 Y}{\partial Z^2} = 0$

d.
$$\frac{\partial Y}{\partial Z} = 10bX^aZ^{b-1} + 3 \qquad \qquad \frac{\partial^2 Y}{\partial Z^2} = 10b(b-1)X^aZ^{b-2}$$

13.
$$Y = 2X^{-3}Z^2 + 5X^2Z - 4X + 20Z$$

a.
$$\frac{\partial Y}{\partial Z} = 4X^{-3}Z + 20 \qquad \qquad \frac{\partial^2 Y}{\partial Z^2} = 4X^{-3}$$

b.
$$\frac{\partial Y}{\partial Z} = 4X^{-3}Z + 5X^2 + 20 \qquad \frac{\partial^2 Y}{\partial Z^2} = 4X^{-3}$$

c.
$$\frac{\partial Y}{\partial Z} = -6X^{-2}Z + 5X^2 + 20$$
 $\frac{\partial^2 Y}{\partial Z^2} = 12X^{-3}$

d.
$$\frac{\partial Y}{\partial Z} = 4X^{-3}Z + 5X^2 + 20$$
 $\frac{\partial^2 Y}{\partial Z^2} = 4X^{-3} + 10X$

e. none of the above

14.
$$Y = \frac{X^2}{Z^2} + 3X^5 - 2Z^3 + XZ$$

a.
$$\frac{\partial Y}{\partial Z} = \frac{-2X^2Z}{Z^4} - 6Z^2 + X \qquad \frac{\partial^2 Y}{\partial Z^2} = \frac{6X^2Z^4}{Z^8} - 12Z$$

b.
$$\frac{\partial Y}{\partial Z} = \frac{-2X^2}{Z^3} - 6Z^2 + X \qquad \frac{\partial^2 Y}{\partial Z^2} = \frac{6X^2}{Z^4} - 12Z$$

c.
$$\frac{\partial Y}{\partial Z} = \frac{\partial^2 Y}{\partial Z^2}$$

d.
$$\frac{\partial Y}{\partial Z} = \frac{2X^2}{Z^1} - 6Z^2 + X \qquad \frac{\partial^2 Y}{\partial Z^2} = \frac{2X^2}{Z^0} - 12Z$$

e. only (a) and (b) of the above

15.
$$Y = 5X^{10} + 10Z^3 + 2X^{-2}Z^{-3} + 20X - 10Z + 100$$

a.
$$\frac{\partial Y}{\partial Z} = 50X^9 - 4X^{-3}Z^{-3} + 20 \qquad \qquad \frac{\partial^2 Y}{\partial Z^2} = 450X^8 + 12X^{-4}Z^{-3}$$

b.
$$\frac{\partial Y}{\partial Z} = 30Z^4 - 6X^{-2}Z^{-2} - 10$$
 $\frac{\partial^2 Y}{\partial Z^2} = 120Z^5 + 12X^{-2}Z^{-1}$

c.
$$\frac{\partial Y}{\partial Z} = 30Z^2 - 6X^{-2}Z^{-4} - 10$$
 $\frac{\partial^2 Y}{\partial Z^2} = 60Z + 24X^{-2}Z^{-5}$

d.
$$\frac{\partial Y}{\partial Z} = 50X^9 + 30Z^2 - 4X^{-3}Z^{-3} - 10$$
 $\frac{\partial^2 Y}{\partial Z^2} = 60Z + 12X^{-4}Z^{-2}$

- e. none of the above
- D. Solve the following constrained optimization problems:
 - 16. The following is the Sales (S) equation based on two types of advertising expenditures – newspaper advertising expenditure (X) and magazine advertising expenditure (Y):

$$S = 200X + 100Y - 10X^2 - 20Y^2 + 20XY$$

Assuming the total advertising budget is restricted to 20 (i.e., X+Y=20), find X and Y that maximize the sales (S), and identify the value of maximum sales (S) and the corresponding λ value. (2 points)

- e. none of the above
- Find the values of X and Y that maximize the following function and a constraint: (Do not solve for the second order conditions.) (3 points)

Maximize
$$S = -60 + 140X + 100Y - 10X^2 - 8Y^2 - 6XY$$

Subject to: $20X + 40Y = 200$

Along with X and Y that maximize the sales (S), identify the value of maximum sales (S) and the corresponding λ value.