GSB 420

Homework #2c Calculus Applications: Optimization & Elasticity

A. Calculation of Demand Elasticity

Suppose the follow demand relationship between the number of automobiles (Q) and its per-unit price (P) is identified by your analyst:

$$Q = 300,000 - 20P$$

- 1. How many automobiles would be demanded at a price of \$2,000?
 - a. 40,000
 - ь. 80,000
 - c. 120,000
 - d. 260,000
 - e. 300,000
- The number of automobiles demanded (Q₁) at a price of \$4,000 is ______.
 and the same (Q₂) at a price of \$6,000 is ______.
 - a. Q₁ = 220,000; and Q₂ = 180,000
 - b. $Q_1 = 180,000$; and $Q_2 = 220,000$
 - c. $Q_1 = 220,000$; and $Q_2 = 220,000$
 - d. Q₁ = 180,000; and Q₂ = 180,000
 - e. none of the above
- Given the equation for the point own price elasticity of demand as:

$$\left| \varepsilon_d \right| = \frac{dQ}{dP} \cdot \frac{P}{Q}$$

Calculate the point own price elasticity of demand at P=\$2,000.

- a. -20 → 20
- b. -0.1538 → 0.1538
- c. -130 → 130
- d. -6.5 → 6.5
- e. not calculable
- Given the equation for the point own price elasticity of demand as in Problem 3 above, calculate the point own price elasticity of demand at P=\$4,000.

5. Given the arc own price elasticity of demand as:

$$\left|\varepsilon_{a}\right| = \frac{dQ}{dP} \cdot \frac{\overline{P}}{\overline{Q}}$$
 where \overline{P} = average of two prices and \overline{Q} = average of two quantities

Calculate the arc own price elasticity of demand between P=\$2,000 and P=\$4,000.

 Given the equation for the arc own price elasticity of demand as in Problem 5 above, calculate the arc own price elasticity of demand between P=\$4,000 and P=\$6,000.

7. If 200,000 automobiles were demanded and sold last year, what was the (per-unit) price of the automobiles?

B. Advanced Problems in Demand Elasticity - 1

Given the following demand equation for Love Chocolate Bars (Q),

$$Q = 10 - 5P + 2I - 3P_c$$

where P = the price of a Love Chocolate Bar; I = average disposable income of the consumers (\$) for chocolate bars; and P_c = the price of a competitor's chocolate bar

Given a generic elasticity of demand as:

$$\varepsilon_X = \frac{\partial Q}{\partial X} \cdot \frac{X}{O}$$

- The point own price elasticity of demand at P=\$2, given I = \$20 and P_c = 1, is equal to ______.
 - a. -0.27 → 0.27
 - b. -0.6667 → 0.6667
 - c. -3.7 → 3.7
 - d. -2.7 → 2.7
 - e. none of the above
- The point income elasticity of demand at I = \$10, given P=\$2 and P_c = 1, is equal to ______.
 - a. -1.176
 - 1.176
 - c. -0.85
 - d. 0.85
 - e. none of the above
- The point cross-price elasticity of demand at P_c = 2, given I = \$10 and P=\$3, is equal to _____.
 - a. -3
 - b. -1.5
 - c. -0.667
 - d. 0.667
 - e. none of the above
- C. Advanced Problems in Demand Elasticity 2

Given the following demand equation for Love chocolate bars (Q),

$$Q = 10P^{-2}I^3A^{-4}P_c$$

where P = the price of a Love chocolate bar; I = average disposable income of the consumers (\$) for chocolate bars; A= advertising expense for Love chocolate bars; and P_c = the price of a competitor's chocolate bar

Given a generic elasticity of demand as:

	$\varepsilon_X = \frac{\partial Q}{\partial X} \cdot \frac{X}{Q}$
11.	The point own price elasticity of demand is and the point income elasticity of demand is
	a. $-0.2 \rightarrow 0.2$; -3 b. $-0.5 \rightarrow 0.5$; 3 c. $-3.7 \rightarrow 3.7$; -3 d. $-2 \rightarrow 2$; 3 e. none of the above
12.	The point advertising elasticity of demand is and the point cross-price elasticity of demand is
	a. 4; -1 b4; -1 c. 4; 1 d4; 1 e. none of the above
Optim	ization Techniques for Profit Maximization - 1
If a firm sells its product at a fixed price of \$121 per unit and has the following total cost function,	
	$TC = 0.02Q^3 - 3Q^2 + 175Q + 500$
13.	The profit-maximizing output, Q, is and the corresponding maximum profit level is (2 points)
	a. 10; -760 b. 100; 7600 c. 90; 4360 d. 90; -4360 e. none of the above
14.	The marginal revenue (MR) function is and the marginal cost (MC) function is

-

D.

a.
$$MR = 121$$
; $MC = 0.06Q^2 - 6Q + 175$

b. MR =
$$121Q$$
; MC = $0.06Q^2 - 6Q$

c. MR = 121; MC =
$$0.02Q^3 - 3Q^2 + 175Q + 500$$

d. MR =
$$1210$$
: MC = $0.020^3 - 30^2 + 1750$

- e. none of the above
- By using the fundamental principle of profit maximizing, the profit
 maximizing output level, Q, is found to be _____ and the corresponding
 maximum profit is _____.
 - a. 10; -760
 - 100; 7600
 - c. 90; 4360
 - d. 90: -4360
 - e. none of the above
- E. Optimization Techniques for Profit Maximization 2

Given the following demand function,

$$O = 300 - 3P$$

and total cost function,

$$TC = \frac{1}{600}Q^3 - \frac{1}{3}Q^2 + 50Q + \frac{1000}{3}$$

- The profit-maximizing output, Q, is _____ and the maximum profit level is _____. (3 points)
 - a. 10; -165
 - b. 10; 165
 - c. 30; 1121.67
 - d. 100; 300
 - e. none of the above
- 17. The marginal revenue function is _____ and the marginal cost function is _____.

a. MR = 3; MC =
$$\frac{1}{200}Q^2 - \frac{2}{3}Q + 50$$

b. MR =
$$100 - \frac{2}{3}Q$$
; MC = $\frac{1}{200}Q^2 - \frac{2}{3}Q + 50$

c.
$$MR = -\frac{2}{3}$$
; $MC = \frac{1}{200}Q^2 - \frac{2}{3}Q + 50$

d. MR =
$$100 - \frac{2}{3}Q$$
; MC = $0.005Q^2 - 6Q + 50$

- e. none of the above
- By using the fundamental principle of profit maximizing, the profit
 maximizing output level, Q, is found to be _____ and the corresponding
 maximum profit is _____.
 - a. 10; -165
 - b. 10; 165
 - c. 30; 1121.67
 - d. 100; 300
 - e. none of the above
- F. Optimization Techniques for Profit Maximization 3
 - A firm has a fixed cost of \$5000 and per unit cost of production of \$2.
 Also, the firm has the following demand function,

Demand:
$$Q = 10,000 - 1,000P$$

This firm's total revenue (TR) function is _____ and total cost (TC) function is _____.

a.
$$TR = 10Q - \frac{Q^2}{1000}$$
; $TC = 2Q$

b.
$$TR = 10Q - \frac{Q^2}{1000}$$
; $TC = 5000$

c.
$$TR = 10Q - \frac{Q^2}{1000}$$
; $TC = 2Q + 5000$

d.
$$TR = 10,000Q - \frac{Q^2}{1000}$$
; $TC = 2Q + 5000$

- e. none of the above
- 20. The profit-maximizing output, Q, is _____ and the maximum profit level is _____. (3 points)
 - a. 400; -\$1,960
 - b. 4000; +\$11,000
 - c. 400; +\$24,000
 - d. 4000; +\$13,000
 - e. none of the above