A. Calculation of Demand Elasticity

Suppose the following demand relationship between the number of automobiles (Q) and its per-unit price (P) is identified by your analyst:

\[Q = 300,000 - 20P \]

1. How many automobiles would be demanded at a price of $2,000?

 a. 40,000
 b. 80,000
 c. 120,000
 d. 260,000
 e. 300,000

2. The number of automobiles demanded (Q₁) at a price of $4,000 is _______, and the same (Q₂) at a price of $6,000 is _______.

 a. Q₁ = 220,000; and Q₂ = 180,000
 b. Q₁ = 180,000; and Q₂ = 220,000
 c. Q₁ = 220,000; and Q₂ = 220,000
 d. Q₁ = 180,000; and Q₂ = 180,000
 e. none of the above

3. Given the equation for the point own price elasticity of demand as:

\[|\varepsilon| = \frac{dQ}{dP} \cdot \frac{P}{Q} \]

Calculate the point own price elasticity of demand at P=$2,000.

 a. -20 ⇒ 20
 b. -0.1538 ⇒ 0.1538
 c. -130 ⇒ 130
 d. -6.5 ⇒ 6.5
 e. not calculable

4. Given the equation for the point own price elasticity of demand as in Problem 3 above, calculate the point own price elasticity of demand at P=$4,000.
a. -20 \rightarrow 20
b. -0.3636 \rightarrow 0.3636
c. -55 \rightarrow 55
d. -2.75 \rightarrow 2.75
e. not calculable

5. Given the arc own price elasticity of demand as:

$$ |e_e| = \frac{dQ}{dP} \frac{\bar{P}}{\bar{Q}} $$

where $\bar{P} =$ average of two prices

and $\bar{Q} =$ average of two quantities

Calculate the arc own price elasticity of demand between P=$2,000$ and P=$4,000$.

a. -0.3636 \rightarrow 0.3636
b. -0.1538 \rightarrow 0.1538
c. -0.25 \rightarrow 0.25
d. -4 \rightarrow 4
e. not calculable

6. Given the equation for the arc own price elasticity of demand as in Problem 5 above, calculate the arc own price elasticity of demand between P=$4,000$ and P=$6,000$.

a. -0.3636 \rightarrow 0.3636
b. -0.6667 \rightarrow 0.6667
c. -0.5 \rightarrow 0.5
d. -2 \rightarrow 2
e. not calculable

7. If 200,000 automobiles were demanded and sold last year, what was the (per-unit) price of the automobiles?

a. $20,000
b. $15,000
c. $10,000
d. $5,000
e. not calculable

B. Advanced Problems in Demand Elasticity - 1

Given the following demand equation for Love Chocolate Bars (Q),
\[Q = 10 - 5P + 2I - 3P_c \]

where \(P \) = the price of a Love Chocolate Bar; \(I \) = average disposable income of the consumers ($\) for chocolate bars; and \(P_c \) = the price of a competitor's chocolate bar

Given a generic elasticity of demand as:

\[\varepsilon_X = \frac{\partial Q}{\partial X} \frac{X}{Q} \]

8. The point own price elasticity of demand at \(P=2 \), given \(I = 20 \) and \(P_c = 1 \), is equal to ______.
 a. -0.27 \(\rightarrow \) 0.27
 b. -0.6667 \(\rightarrow \) 0.6667
 c. -3.7 \(\rightarrow \) 3.7
 d. -2.7 \(\rightarrow \) 2.7
 e. none of the above

9. The point income elasticity of demand at \(I = 10 \), given \(P=2 \) and \(P_c = 1 \), is equal to ______.
 a. -1.176
 b. 1.176
 c. -0.85
 d. 0.85
 e. none of the above

10. The point cross-price elasticity of demand at \(P_c = 2 \), given \(I = 10 \) and \(P=3 \), is equal to ______.
 a. -3
 b. -1.5
 c. -0.667
 d. 0.667
 e. none of the above

C. Advanced Problems in Demand Elasticity - 2

Given the following demand equation for Love chocolate bars \(Q \),

\[Q = 10P^{-2}I^3A^{-1}P_c \]
where \(P \) = the price of a Love chocolate bar; \(I \) = average disposable income of the consumers ($); \(A \) = advertising expense for Love chocolate bars, and \(P_c \) = the price of a competitor's chocolate bar.

Given a generic elasticity of demand as:

\[
\varepsilon = \frac{\frac{\partial Q}{\partial X}}{\frac{Q}{X}}
\]

11. The point own price elasticity of demand is _____ and the point income elasticity of demand is _____.
 a. -0.2 → 0.2; -3
 b. -0.5 → 0.5; 3
 c. -3.7 → 3.7; -3
 d. -2 → 2; 3
 e. none of the above

12. The point advertising elasticity of demand is _____ and the point cross-price elasticity of demand is _____.
 a. 4; -1
 b. -4; -1
 c. 4; 1
 d. -4; 1
 e. none of the above

D. Optimization Techniques for Profit Maximization - 1

If a firm sells its product at a fixed price of $121 per unit and has the following total cost function,

\[
TC = 0.02Q^3 - 3Q^2 + 175Q + 500
\]

13. The profit-maximizing output, \(Q \), is _____ and the corresponding maximum profit level is ____. (2 points)
 a. 10; -760
 b. 100; 7600
 c. 90; 4360
 d. 90; -4360
 e. none of the above

14. The marginal revenue (MR) function is _____ and the marginal cost (MC) function is ______.
a. \(MR = 121; \ MC = 0.06Q^3 - 6Q + 175 \)
b. \(MR = 121Q; \ MC = 0.06Q^3 - 6Q \)
c. \(MR = 121; \ MC = 0.02Q^3 - 3Q^2 + 175Q + 500 \)
d. \(MR = 121Q; \ MC = 0.02Q^3 - 3Q^2 + 175Q \)
e. none of the above

15. By using the fundamental principle of profit maximizing, the profit maximizing output level, \(Q \), is found to be ______ and the corresponding maximum profit is ______.

a. 10; -760
b. 100; 7600
c. 90; 4360
d. 90; -4360
e. none of the above

E. Optimization Techniques for Profit Maximization — 2

Given the following demand function,

\[Q = 300 - 3P \]

and total cost function,

\[TC = \frac{1}{600}Q^3 - \frac{1}{3}Q^3 + 50Q + \frac{1000}{3} \]

16. The profit-maximizing output, \(Q \), is ______ and the maximum profit level is ______. (3 points)

a. 10; -165
b. 10; 165
c. 30; 1121.67
d. 100; 300
e. none of the above

17. The marginal revenue function is ______ and the marginal cost function is ______.

a. \(MR = \frac{1}{200}Q^2 - \frac{2}{3}Q + 50 \)
b. \(MR = 100 - \frac{2}{3}Q; \ MC = \frac{1}{200}Q^2 - \frac{2}{3}Q + 50 \)
c. \(MR = \frac{2}{3} \); \(MC = \frac{1}{200}Q^2 - \frac{2}{3}Q + 50 \)
d. \(MR = 100 - \frac{2}{3}Q \); \(MC = 0.005Q^2 - 6Q + 50 \)
e. none of the above

18. By using the fundamental principle of profit maximizing, the profit maximizing output level, \(Q \), is found to be _______ and the corresponding maximum profit is ________.

 a. 10; -165
 b. 10; 165
 c. 30; 1121.67
 d. 100; 300
 e. none of the above

F. Optimization Techniques for Profit Maximization – 3

19. A firm has a fixed cost of $5000 and per unit cost of production of $2. Also, the firm has the following demand function.

 \[
 Q = 10,000 - 1,000P
 \]

 This firm’s total revenue (TR) function is _______ and total cost (TC) function is _______.

 a. \(TR = 10Q - \frac{Q^2}{1000}; \; TC = 2Q \)
 b. \(TR = 10Q - \frac{Q^2}{1000}; \; TC = 5000 \)
 c. \(TR = 10Q - \frac{Q^2}{1000}; \; TC = 2Q + 5000 \)
 d. \(TR = 10,000 - \frac{Q^2}{1000}; \; TC = 2Q + 5000 \)
 e. none of the above

20. The profit-maximizing output, \(Q \), is _______ and the maximum profit level is _______. (3 points)

 a. 400; -$1,960
 b. 4000; +$11,000
 c. 400; -$24,000
 d. 4000; +$13,000
 e. none of the above